Skip to main content

Advertisement

Log in

Trichoderma asperellum increases crop yield and fruit weight of blackberry (Rubus glaucus) under subtropical Andean conditions

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

A Correction to this article was published on 17 June 2019

This article has been updated

Abstract

Mora de Castilla (Rubus glaucus, Benth), also called blackberry, is grown mainly in Colombia and Ecuador. This fruit crop is of economic importance for farmers in the Province of Tungurahua (Ecuador). In this field research, the effect of Trichoderma asperellum (1.53 × 109 CFU/g) inoculation was assessed on crop yield and fruit weight at three production sites (Huachi Grande, Píllaro and Tisaleo in Ecuador). Factorial experiments were conducted consisting of treatments of 0.18 g of a commercial product per plant and a second uninoculated treatment). The product was applied eight times per month and the weekly fruit harvest recorded in each of the eight applications. The inoculation of T. asperellum had a significant effect on crop yield and fruit weight: yield was greatest in Tisaleo (5350 g/plant) with T. asperellum treatment, which was increased by 17% over the uninoculated witness (4447 g/plant). Fruit weight in Píllaro was improved from 5.36 g/fruit for the uninoculated control to 6.04 g/fruit (12.6%). Additionally, the organic matter (OM) content was correlated with the fungal population in the soil. Tisaleo had the highest OM (4%) and the highest yield in this study. In conclusion, the inoculation of T. asperellum in the soil positively affected crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 17 June 2019

    Unfortunately, an error occurred in Tables 2, 3, and 6.

References

  • Altintas S, Bal U (2008) Effects of the commercial product based on Trichoderma harzianum on plant, bulb and yield characteristics of onion. Sci Hortic 116(2):219–222

    Article  Google Scholar 

  • Bailey BA, Lumsden RD (1998) Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol II. Taylor and Francis, London, pp 185–204

    Google Scholar 

  • Bal U, Altintas S (2006) A positive side effect from Trichoderma harzianum, the biological control agent: increased yield in vegetable crops. Environ Protoc Ecol 7(2):383–387

    Google Scholar 

  • Barrera VH, Alwang J, Andrango G, Domínguez Andrade JM, Escudero L, Martínez A, Arévalo J (2017) La cadena de valor de la mora y sus impactos en la Región Andina del Ecuador. ARCOIRIS Producciones Gráficas, Quito

    Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59(1):39–46

    Article  CAS  Google Scholar 

  • Brito B, Montalvo D, Freire V, Vásquez W, Martínez A (2016) Calidad en la cosecha, poscosecha y comercialización. In: Galarza D, Garcés S, Velásquez J, Sánchez V, Zambrano J (eds) El cultivo de la mora en el Ecuador. Imprenta San Mateo, Quito, pp 137–164

    Google Scholar 

  • Cardona WA (2017) Requerimientos nutricionales (nitrógeno, fósforo, potasio y calcio) en etapa vegetativa y reproductiva de un cultivo de mora (Rubus glaucus Benth.), ubicado en el municipio de Silvania (Cundinamarca) (Doctoral dissertation, Universidad Nacional de Colombia-Sede Bogotá)

  • Chagas AF, Borges LF, Oliveira L, Oliveira JC (2019) Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. Afr J Agric Res 14(5):263–271

    Article  Google Scholar 

  • Cotxarrera L, Trillas MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol Biochem 34(1):467–476

    Article  CAS  Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopath 94(2):147–153

    Article  Google Scholar 

  • Hatch WR, Ott WL (1968) Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. Anal Chem 40(14):2085–2087

    Article  CAS  Google Scholar 

  • Kafkafi U, Xu G, Imas P, Magen H, Tarchitzky J (2001) Potassium and chloride in crops and soils: the role of potassium chloride fertilizer in crop nutrition. IPI Research Topics No. 22. Int Potash Inst, Basilea

    Google Scholar 

  • Kowalska J (2011) Effects of Trichoderma asperellum [t1] on Botrytis cinerea [Pers.: fr.], growth and yield of organic strawberry. Acta Sci Pol 10(4):107–114

    Google Scholar 

  • Lumsden RD, Carter JP, Whipps JM, Lynch JM (1990) Comparison of biomass and viable propagule measurements in the antagonism of Trichoderma harzianum against Pythium ultimum. Soil Biol Biochem 22(2):187–194

    Article  Google Scholar 

  • Lynch JM, Wilson KL, Ousley MA, Whipps JM (1991) Response of lettuce to Trichoderma treatment. Lett Appl Microbiol 12(2):59–61

    Article  Google Scholar 

  • Ma T, Zuazaga G (1942) Micro-Kjeldahl determination of nitrogen. A new indicator and an improved rapid method. Ind Eng Chem Anal Edit 14(3):280–282

    Article  CAS  Google Scholar 

  • MADR Ministerio de agricultura y desarrollo rural (2015) Indicadores de apoyo. In: Cadena productiva nacional de la mora. Ministerio de Agricultura y Desarrollo Rural. https://sioc.minagricultura.gov.co/Mora/Documentos/002%20-%20Cifras%20Sectoriales/Cifras%20Sectoriales%20–%202015%20Marzo.pdf. Accessed 19 Dec 2017

  • Monte E (2001) Understanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol 4(1):1–4

    CAS  PubMed  Google Scholar 

  • Morillo A, Morillo Y, Zamorano A, Vásquez H, Muñoz J (2005) Caracterización molecular con microsatélites aleatorios RAM de la Colección de mora Rubus spp. de la Universidad Nacional de Colombia, Sede Palmira. Acta Agronom 54(2):15–24

    Google Scholar 

  • Poldma P, Albrecht A, Merivee A (2002) Influence of fungus Trichoderma viride on the yield of cucumber in greenhouse conditions. In: Proceedings of the Conference on Scientific Aspects of Organic Farming, Jelgava, Latvia. 21–22 March 2002, pp 176–180

  • Porras M, Barrau C, Romero F (2007) Effects of soil solarization and Trichoderma on strawberry production. Crop Prot 6(5):782–787

    Article  Google Scholar 

  • Queiroz PR, Valadarez MC, Inglis PW (2004) Survival in soil and detection of co-transformed Trichoderma harzianum by nested PCR. Pesq Agropec Bras 39(4):403–405

    Article  Google Scholar 

  • Ridout CJ, Coley-Smith JR, Lynch JM (1986) Enzyme activity and electrophoretic profile of extracellular protein induced in Trichoderma spp. by cell walls of Rhizoctonia solani. Microbiology 132(8):2345–2352

    Article  CAS  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium). Appl Soil Ecol 28(2):139–146

    Article  Google Scholar 

  • Sotomayor A, Gonzáles A, Cho K, Villavicencio Jackson T, Viera W (2019) Effect of the application of microorganisms on the nutrient absorption in avocado (Persea americana Mill.) seedlings. J Korean Soc Int Agric 31(1):17–24

    Article  Google Scholar 

  • Vargas WA, Crutcher FK, Kenerley CM (2011) Functional characterization of a plant-like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. New Phytopat 189(3):777–789

    Article  CAS  Google Scholar 

  • Viera W, Noboa M, Bermeo J, Báez F, Jackson T (2018) Quality parametres of four types of formulations based on Trichoderma asperellum and Purpuricillium lilacinum. Enfoque UTE 9(4):145–153

    Article  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant–pathogen interactions. Soil Biol and Biochem 40(1):1–10

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  • Windham MT, Elad Y, Baker R (1986) A mechanism for increased plant growth by Trichoderma spp. Phytopath 76:518–521

    Article  Google Scholar 

  • Zhao L, Zang Y (2015) Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J Integr Agric 14(8):1588–1597

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Project “Biocontrol systems for sustainable agriculture, Ecuador” funded by MFAT-New Zealand for the support of this research. Thanks to Dr. H.R. Kutcher from the University of Saskatchewan for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Noboa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viera, W., Noboa, M., Martínez, A. et al. Trichoderma asperellum increases crop yield and fruit weight of blackberry (Rubus glaucus) under subtropical Andean conditions. Vegetos 32, 209–215 (2019). https://doi.org/10.1007/s42535-019-00024-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-019-00024-5

Keywords

Navigation