Skip to main content
Log in

Deep stochastic optimization in finance

  • Original Article
  • Published:
Digital Finance Aims and scope Submit manuscript

Abstract

This paper outlines, and through stylized examples evaluates a novel and highly effective computational technique in quantitative finance. Empirical Risk Minimization (ERM) and neural networks are key to this approach. Powerful open source optimization libraries allow for efficient implementations of this algorithm making it viable in high-dimensional structures. The free-boundary problems related to American and Bermudan options showcase both the power and the potential difficulties that specific applications may face. The impact of the size of the training data is studied in a simplified Merton type problem. The classical option hedging problem exemplifies the need of market generators or large number of simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Although we believe that the following parameters are not crucial for replicating our results (because they were not tuned), we list them here for completeness: batch size: 512; optimizer: Adam with the Flux default parameters \((\eta , \beta _1, \beta _2) = (0.001, 0.9, 0.999)\); and the number of epochs was a fixed value for which the training error of a typical run had plateaued.

References

  • Andersen, L., & Broadie, M. (2004). Primal-dual simulation algorithm for pricing multidimensional American options. Management Science, 50(9), 1222–1234.

    Article  Google Scholar 

  • Bachouch, A., Huré, C., Langrené, N., & Pham, H. (2018). Deep neural networks algorithms for stochastic control problems on finite horizon, part 2: Numerical applications. arXiv:1812.05916.

  • Bayer, C., Tempone, R., & Wolfers, S. (2020). Pricing American options by exercise rate optimization. Quantitative Finance, 20(11), 1749–1760.

    Article  Google Scholar 

  • Becker, S., Cheridito, P., & Jentzen, A. (2019). Deep optimal stopping. Journal of Machine Learning Research, 20(4), 1–25.

    Google Scholar 

  • Becker, S., Cheridito, P., Jentzen, A., & Welti, T. (2021). Solving high-dimensional optimal stopping problems using deep learning. European Journal of Applied Mathematics, 32(3), 470–514.

    Article  Google Scholar 

  • Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic programming. Athena Scientific.

    Google Scholar 

  • Boudabsa, L., & Filipović, D. (2021). Machine learning with kernels for portfolio valuation and risk management. Finance and Stochastics, 26(2), 1–42.

    Google Scholar 

  • Broadie, M., & Detemple, J. (1997). The valuation of American options on multiple assets. Mathematical Finance, 7(3), 241–286.

    Article  Google Scholar 

  • Buehler, H., Gonon, L., Teichmann, J., & Wood, B. (2019a). Deep hedging. Quantitative Finance, 19(8), 1271–1291.

    Article  Google Scholar 

  • Buehler, H., Gonon, L., Teichmann, J., Wood, B., & Mohan, B. (2019b). Deep hedging: hedging derivatives under generic market frictions using reinforcement learning. Swiss Finance Institute: Technical report.

  • Chevalier, E., Pulido, S., & Zúñiga, E. (2021). American options in the Volterra Heston model. arXiv:2103.11734.

  • Ciocan, D., & Mišić, V. (2022). Interpretable optimal stopping. Management Science, 68(3), 1616–1638.

    Article  Google Scholar 

  • Cybenko, G. (1989). Approximations by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2, 183–192.

    Article  Google Scholar 

  • Detemple, J. (2005). American-style derivatives: Valuation and computation. CRC Press.

    Book  Google Scholar 

  • Fecamp, S., Mikael, J., & Warin, X. (2020). Deep learning for discrete-time hedging in incomplete markets. Journal of Computational Finance, 25(2).

  • Filipovic, D., Multerer, M., & Schneider, P. (2021). Adaptive joint distribution learning. arXiv:2110.04829.

  • Fleming, W. H., & Soner, H. M. (2006). Controlled Markov processes and viscosity solutions (Vol. 25). Springer Science & Business Media.

    Google Scholar 

  • Föllmer, H., & Schweizer, M. (1991). Hedging of contingent claims under incomplete information. Applied Stochastic Analysis, 5(389–414), 19–31.

    Google Scholar 

  • Germain, M., Pham, H., & Warin, X. (2020). Deep backward multistep schemes for nonlinear pdes and approximation error analysis. arXiv:2006.01496.

  • Gonon, L., Muhle-Karbe, J., & Shi, X. (2021). Asset pricing with general transaction costs: Theory and numerics. Mathematical Finance, 31(2), 595–648.

    Article  Google Scholar 

  • Han, J., W. E. (2016). Deep learning approximation for stochastic control problems. In: Deep Reinforcement Learning Workshop, NIPS.

  • Han, J., Jentzen, A., & E, W. (2018). Solving high-dimensional partial differential equations using deep learning. Proceedings of the National Academy of Sciences, 115(34), 8505–8510.

    Article  Google Scholar 

  • Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2), 327–343.

    Article  Google Scholar 

  • Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251–257.

    Article  Google Scholar 

  • Huré, C., Pham, H., Bachouch, A., & Langrené, N. (2018). Deep neural networks algorithms for stochastic control problems on finite horizon, part I: convergence analysis. arXiv:1812.04300.

  • Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A nonparametric approach to pricing and hedging derivative securities via learning networks. The Journal of Finance, 49(3), 851–889.

    Article  Google Scholar 

  • Innes, M. (2018). Flux: Elegant machine learning with Julia. Journal of Open Source Software, 3(25), 602.

    Article  Google Scholar 

  • Laurière, M., Pagès, G., & Pironneau, O. (2021). Performance of a Markovian neural network versus dynamic programming on a fishing control problem. arXiv:2109.06856.

  • Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: a simple least-squares approach. The Review of Financial Studies, 14(1), 113–147.

    Article  Google Scholar 

  • Ludkovski, M. (2020). mlosp: Towards a unified implementation of regression Monte Carlo algorithms. arXiv:2012.00729.

  • Reppen, A. M., & Soner, H. M. (2020). Deep empirical risk minimization in finance: looking into the future. Mathematical Finance. https://doi.org/10.1111/mafi.12365.

  • Reppen, A. M., Soner, H. M., & Tissot-Daguette, V. (2022). Neural optimal stopping boundary. arXiv:2205.04595.

  • Ruf, J., & Wang, W. (2020). Neural networks for option pricing and hedging: a literature review. Journal of Computational Finance, 24(1).

  • Ruf, J., & Wang, W. (2021). Hedging with linear regressions and neural networks. Journal of Business & Economic Statistics, p. 1–13.

  • Schweizer, M. (1991). Option hedging for semimartingales. Stochastic Processes and Their Applications, 37(2), 339–363.

    Article  Google Scholar 

  • Schweizer, M. (1999). A guided tour through quadratic hedging approaches. Technical report, SFB 373 Discussion Paper.

  • Sirignano, J., & Spiliopoulos, K. (2018). Dgm: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 375, 1339–1364.

    Article  Google Scholar 

  • Tsitsiklis, J. N., & Van Roy, B. (2001). Regression methods for pricing complex American-style options. IEEE Transactions on Neural Networks, 12(4), 694–703.

    Article  Google Scholar 

  • Wang, S., & Perdikaris, P. (2021). Deep learning of free boundary and Stefan problems. Journal of Computational Physics, 428, 109914.

    Article  Google Scholar 

  • Warin, X. (2019). Variance optimal hedging with application to electricity markets. Journal of Computational Finance, 23(3), 33–59.

    Google Scholar 

Download references

Acknowledgements

Research of the second and the third authors was partially supported by the National Science Foundation Grant DMS 2106462.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mete Soner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reppen, A.M., Soner, H.M. & Tissot-Daguette, V. Deep stochastic optimization in finance. Digit Finance 5, 91–111 (2023). https://doi.org/10.1007/s42521-022-00074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42521-022-00074-6

Keywords

Mathematics Subject Classification

JEL Classification

Navigation