Abstract
In this manuscript, we present exponential inequalities for spatial lattice processes which take values in a separable Hilbert space and satisfy certain dependence conditions. We consider two types of dependence: spatial data under \(\alpha\)-mixing conditions and spatial data which satisfy a weak dependence condition introduced by Dedecker and Prieur (Prob Theory Relat Fields 132(2):203–236, 2005). We demonstrate their usefulness in the functional kernel regression model of Ferraty and Vieu (Nonparametr Stat 16(1–2):111–125, 2004), where we study uniform consistency properties of the estimated regression operator on increasing subsets of the underlying function space.
This is a preview of subscription content, access via your institution.
References
- 1.
Álvarez-Liébana J, Ruiz-Medina M (2019) Prediction of air pollutants pm 10 by arbx (1) processes. Stoch Environ Res Risk Assess 33(10):1721–1736
- 2.
Álvarez-Liébana J, Bosq D, Ruiz-Medina MD (2017) Asymptotic properties of a component-wise arh (1) plug-in predictor. J Multivar Anal 155:12–34
- 3.
Andrews DW (1984) Non-strong mixing autoregressive processes. J Appl Probab 21(4):930–934
- 4.
Antoniadis A, Sapatinas T (2003) Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes. J Multivar Anal 87(1):133–158
- 5.
Besse PC, Cardot H, Stephenson DB (2000) Autoregressive forecasting of some functional climatic variations. Scand J Stat 27(4):673–687
- 6.
Bosq D (2000) Linear processes in function spaces: theory and applications, vol 149. Springer Science & Business Media, Berlin
- 7.
Bradley RC (2005) Basic properties of strong mixing conditions a survey and some open questions. Probab Surv 2(2):107–144
- 8.
Carbon M, Hallin M, Tran LT (1996) Kernel density estimation for random fields: the \(L^1\) theory. J Nonparametr Stat 6(2–3):157–170
- 9.
Carbon M, Francq C, Tran LT (2007) Kernel regression estimation for random fields. J Stat Plan Inference 137(3):778–798
- 10.
Chiou J-M, Müller H-G, Wang J-L (2004) Functional response models. Stat Sin 14:675–693
- 11.
Collomb G (1977) Estimation non paramétrique de la régression par la méthode du noyau: propriété de convergence asymptotiquememt normale indépendante. Annales scientifiques de l’Université de Clermont. Mathématiques 65(15):24–46
- 12.
Cressie N (1993) Statistics for spatial data. Wiley series in probability and mathematical statistics: applied probability and statistics. Wiley, New York
- 13.
Cuevas A (2014) A partial overview of the theory of statistics with functional data. J Stat Plan Inference 147:1–23
- 14.
Cuevas A, Febrero M, Fraiman R (2002) Linear functional regression: the case of fixed design and functional response. Can J Stat 30(2):285–300
- 15.
Dedecker J, Doukhan P (2003) A new covariance inequality and applications. Stoch Process Appl 106(1):63–80
- 16.
Dedecker J, Prieur C (2005) New dependence coefficients. Examples and applications to statistics. Probab Theory Relat Fields 132(2):203–236
- 17.
Delsol L (2009) Advances on asymptotic normality in non-parametric functional time series analysis. Statistics 43(1):13–33
- 18.
Ferraty F, Vieu P (2002) The functional nonparametric model and application to spectrometric data. Comput Stat 17(4):545–564
- 19.
Ferraty F, Vieu P (2004) Nonparametric models for functional data, with application in regression, time series prediction and curve discrimination. Nonparametr Stat 16(1–2):111–125
- 20.
Ferraty F, Laksaci A, Vieu P (2006) Estimating some characteristics of the conditional distribution in nonparametric functional models. Stat Inference Stoch Process 9(1):47–76
- 21.
Ferraty F, Mas A, Vieu P (2007) Nonparametric regression on functional data: inference and practical aspects. Aust N Z J Stat 49(3):267–286
- 22.
Ferraty F, Van Keilegom I, Vieu P (2012) Regression when both response and predictor are functions. J Multivar Anal 109:10–28
- 23.
García-Portugués E, Álvarez-Liébana J, Álvarez-Pérez G, González-Manteiga W (2019) A goodness-of-fit test for the functional linear model with functional response. arXiv preprint arXiv:1909.07686
- 24.
Guyon X (1995) Random fields on a network: modeling, statistics, and applications. Springer Science & Business Media, Berlin
- 25.
Hallin M, Lu Z, Tran LT (2004) Local linear spatial regression. Ann Stat 32(6):2469–2500
- 26.
Hörmann S, Kokoszka P (2010) Weakly dependent functional data. Ann Stat 38(3):1845–1884
- 27.
Ibragimov IA (1962) Some limit theorems for stationary processes. Theory Probab Appl 7(4):349–382
- 28.
Imaizumi M, Kato K (2018) PCA-based estimation for functional linear regression with functional responses. J Multivar Anal 163:15–36
- 29.
Krebs JTN (2018) Orthogonal series estimates on strong spatial mixing data. J Stat Plan Inference 193:15–41
- 30.
Laib N, Louani D (2010) Nonparametric kernel regression estimation for functional stationary Ergodic data: asymptotic properties. J Multivar Anal 101(10):2266–2281
- 31.
Li L (2016) Nonparametric regression on random fields with random design using wavelet method. Stat Inference Stoch Process 19(1):51–69
- 32.
Maume-Deschamps V (2006) Exponential inequalities and functional estimations for weak dependent data: applications to dynamical systems. Stoch Dyn 6(04):535–560
- 33.
Merlevède F, Peligrad M, Rio E (2009) Bernstein inequality and moderate deviations under strong mixing conditions, volume 5 of Collections, pages 273–292. Institute of Mathematical Statistics, Beachwood, Ohio, USA
- 34.
Politis DN, Romano JP (1994) Limit theorems for weakly dependent Hilbert space valued random variables with application to the stationary bootstrap. Stat Sin 4:461–476
- 35.
Ramsay JO, Silverman B (1997) Functional data analysis. Springer, Berlin
- 36.
Rosenblatt M (1956) A central limit theorem and a strong mixing condition. Proc Natl Acad Sci 42(1):43–47
- 37.
Slaoui Y (2019) Wild bootstrap bandwidth selection of recursive nonparametric relative regression for independent functional data. J Multivar Anal 173:494–511
- 38.
Slaoui Y (2020) Recursive nonparametric regression estimation for independent functional data. Stat Sin 30(1):417–37
- 39.
Tran LT (1990) Kernel density estimation on random fields. J Multivar Anal 34(1):37–53
- 40.
Valenzuela-Domínguez E, Krebs JTN, Franke JE (2017) A Bernstein inequality for spatial lattice processes. arXiv preprint arXiv:1702.02023
- 41.
van der vaart A, Wellner J (2013) Weak convergence and empirical processes: with applications to statistics. Springer series in statistics. Springer, New York
- 42.
Yao F, Müller H-G, Wang J-L (2005) Functional linear regression analysis for longitudinal data. Ann Stat 33:2873–2903
Funding
This research was supported by the Deutsche Forschungsgemeinschaft (DFG), grant number KR 4977/1-1.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Lemma 6.1
( [27]) Let \(Z_1,\ldots ,Z_n\) be real-valued non-negative random variables each a.s. bounded. Set \(\alpha \,{:}{=}\,\sup _{s\in \{1,\ldots ,n\} } \alpha \left( \sigma ( Z_i: i \le k), \sigma ( Z_i: i > k) \right)\). Then \(\left| {\mathbb {E}}\left[ \, \prod _{i=1}^n Z_i \, \right] - \prod _{i=1}^n {\mathbb {E}}\left[ \, Z_i \, \right] \right| \le (n-1) \, \alpha \, \prod _{i=1}^n \left\Vert Z_i \right\Vert _{\infty }\).
Rights and permissions
About this article
Cite this article
Krebs, J. A Note on Exponential Inequalities in Hilbert Spaces for Spatial Processes with Applications to the Functional Kernel Regression Model. J Stat Theory Pract 15, 20 (2021). https://doi.org/10.1007/s42519-020-00147-y
Accepted:
Published:
Keywords
- Exponential inequalities
- Functional data analysis
- Functional kernel regression
- Nonlinear regression operator
- Nonparametric curve estimation
- Spatial lattice processes
- Strong mixing
- Weak dependence measures
Mathematics Subject Classification
- Primary: 62G08
- 62M40
- Secondary: 37A25
- 62G20