Skip to main content
Log in

Restricted Mean Survival Time Estimation: Nonparametric and Regression Methods

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript


In survival analyses, the log-rank test is the standard approach to comparison of survival distributions estimated from independent groups. The semiparametric proportional hazards model uses the hazard function as the conduit to assess the influence of covariates x on the survival distribution of an event time T. The accelerated failure time model aligned closely to standard linear regression can estimate summary features such as the mean and percentiles of the survival distribution as functions of x. However, a full specification of a parametric distribution is often needed to analyze a model for \( E(\log T|{\mathbf{x}}) \). A different approach is to model the restricted mean survival time \( E(\hbox{min} (T,\tau )|{\mathbf{x}}) \). The specified time horizon \( \tau \) is informed by applications. All approaches must account for censoring in event times. We review analyses for restricted mean survival time based on the method of inverse-probability of censoring weighting, and on pseudo observations and a discussion on specified parametric models. As illustration, we apply the methods to a data set on relapse-free survival time in patients who underwent bone marrow transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others


  1. Royston P, Parmar MKB (2013) Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Med Res Methodol.

    Article  Google Scholar 

  2. Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer, New York

    Book  Google Scholar 

  3. Tian L, Zhao LH, Wei LJ (2014) Predicting the restricted mean event time with the subject’s baseline covariates in survival analysis. Biostatistics 15(2):222–233.

    Article  Google Scholar 

  4. Andersen PK, Hansen MG, Klein JP (2004) Regression analysis of restricted mean survival time based on pseudo-observations. Lifetime Data Anal 10(4):335–350.

    Article  MathSciNet  MATH  Google Scholar 

  5. Fiocco M, Putter H, van Houwelingen HC (2008) Reduced-rank proportional hazards regression and simulation-based prediction for multi-state models. Stat Med 27(21):4340–4358.

    Article  MathSciNet  Google Scholar 

  6. Houwelingen HCV, Putter H (2012) Dynamic prediction in clinical survival analysis. CRC Press, Boca Raton

    MATH  Google Scholar 

  7. Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York

    Book  Google Scholar 

  8. Gardiner JC, Luo Z, Tang X, Ramamoorthi RV (2014) Fitting heavy-tailed distributions to health care data by parametric and bayesian methods. J Stat Theory Pract 8(4):619–652

    Article  MathSciNet  Google Scholar 

  9. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, New York

    Book  Google Scholar 

  10. Wooldridge JM (2007) Inverse probability weighted estimation for general missing data problems. J Econom 141(2):1281–1301

    Article  MathSciNet  Google Scholar 

  11. Laurie DP (1997) Calculation of Gauss–Kronrod quadrature rules. Math Comput 66(219):1133–1145.

    Article  MathSciNet  MATH  Google Scholar 

  12. Andersen PK, Perme MP (2010) Pseudo-observations in survival analysis. Stat Methods Med Res 19(1):71–99.

    Article  MathSciNet  Google Scholar 

  13. Logan BR, Wang T (2014) Pseudo-value regression models. In: Ibrahim JG, Scheike TH, Klein JP, van Houwelingen HC (eds) Handbook of survival analysis. CRC Press, Boca Raton

    Google Scholar 

  14. Wang X, Schaubel DE (2018) Modeling restricted mean survival time under general censoring mechanisms. Lifetime Data Anal 24(1):176–199.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang C, Wu Y, Yin G (2020) Restricted mean survival time for interval-censored data. Stat Med.

    Article  MathSciNet  Google Scholar 

  16. Graw F, Gerds TA, Schumacher M (2009) On pseudo-values for regression analysis in competing risks models. Lifetime Data Anal 15(2):241–255.

    Article  MathSciNet  MATH  Google Scholar 

  17. Klein JP, Andersen PK (2005) Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function. Biometrics 61(1):223–229.

    Article  MathSciNet  MATH  Google Scholar 

  18. Calkins KL, Canan CE, Moore RD, Lesko CR, Lau B (2018) An application of restricted mean survival time in a competing risks setting: comparing time to ART initiation by injection drug use. BMC Med Res Methodol.

    Article  Google Scholar 

  19. Kloecker DE, Davies MJ, Khunti K, Zaccardi F (2020) Uses and limitations of the restricted mean survival time: illustrative examples from cardiovascular outcomes and mortality trials in type 2 diabetes. Ann Internal Med 172(8):541.

    Article  Google Scholar 

  20. Hasegawa T, Misawa S, Nakagawa S, Tanaka S, Tanase T, Ugai H et al (2020) Restricted mean survival time as a summary measure of time-to-event outcome. Pharm Stat 19(4):436–453.

    Article  Google Scholar 

  21. Staerk L, Preis SR, Lin HH, Casas JP, Lunetta K, Weng LC et al (2020) Novel risk modeling approach of atrial fibrillation with restricted mean survival times application in the framingham heart study community-based cohort. Circ-Cardiovasc Qual Outcomes.

    Article  Google Scholar 

  22. Lin DY (2003) Regression analysis of incomplete medical cost data. Stat Med 22(7):1181–1200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Joseph C. Gardiner.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is intended for the special issue “Celebrating the Centenary of Professor C R Rao”.



1.1 Adjustment for Estimated Weights in the IPCW Method

In the second term of Eq. (10) use \( \hat{w}_{i} - w_{i} = - \delta_{i}^{ * } \left( {\frac{{\hat{G}(R_{i} - ) - G(R_{i} - )}}{{\hat{G}(R_{i} - )G(R_{i} - )}}} \right) \) and the representation for the KM estimator of the censoring distribution from Anderson et al., [2] or Lin [22],

\( \left( {\frac{{\hat{G}(t) - G(t)}}{G(t)}} \right) = - \int_{0}^{t} {\frac{{\hat{G}(s - )}}{G(s)}} \frac{{dM^{c} (s)}}{Y(s)} \approx - \sum\nolimits_{i = 1}^{n} {\int_{0}^{t} {\frac{{dM_{i}^{c} (u)}}{Y(u)}} } \) where \( Y_{i} (u) = [C_{i} \wedge T_{i} \ge u],\,\,\,Y(u) = \sum\nolimits_{i = 1}^{n} {Y_{i} (u)} \)

\( M_{i}^{c} (t) = [C_{i} \wedge T_{i} \le t,\delta_{i} = 0] - \int_{0}^{t} {[C_{i} \wedge T_{i} \ge u]} \,dA^{c} (u) \) and \( A^{c} \) is the integrated hazard of C estimated by \( \int_{0}^{t} {\frac{{dN^{c} (u)}}{Y(u)}} \) where \( N^{c} (t) = \sum\nolimits_{i = 1}^{n} {[C_{i} \wedge T_{i} \le t,\delta_{i} = 0]} \). Next,

$$ \begin{aligned} \sum\limits_{i = 1}^{n} {(\hat{w}_{i} - w_{i} )} \left( {R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )} \right){\mathbf{x}}_{i} & = - \sum\limits_{i = 1}^{n} {\delta_{i}^{ * } \left( {\frac{{\hat{G}(R_{i} - ) - G(R_{i} - )}}{{\hat{G}(R_{i} - )G(R_{i} - )}}} \right)} \left( {R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )} \right){\mathbf{x}}_{i} \\ & = \sum\limits_{i = 1}^{n} {\hat{w}_{i} \left( {R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )} \right){\mathbf{x}}_{i} \left( {\sum\nolimits_{j = 1}^{n} {\int_{0}^{{R_{i} - }} {\frac{{dM_{j}^{c} (u)}}{Y(u)}} } } \right)} \\ \end{aligned} $$

\( = \sum\nolimits_{i = 1}^{n} {w_{i} (R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )){\mathbf{x}}_{i} \left( {\sum\nolimits_{j = 1}^{n} {\int_{0}^{\infty } {\frac{{[u < R_{i} ]dM_{j}^{c} (u)}}{Y(u)}} } } \right)} \) replacing \( \hat{w}_{i} \) by \( w_{i} \).

Let \( {\mathbf{Q}}(t) = \sum\nolimits_{i = 1}^{n} {w_{i} (R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta ))[R_{i} > t]{\mathbf{x}}_{i} /Y(t)} \, \).

The previous term is (place all inside the integral)

\( \sum\nolimits_{j = 1}^{n} {\int_{0}^{\infty } {\left\{ {\sum\nolimits_{i = 1}^{n} {w_{i} (R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )){\mathbf{x}}_{i} } [R_{i} > u]} \right\}\frac{{dM_{j}^{c} (u)}}{Y(u)}} } = \sum\nolimits_{j = 1}^{n} {\int_{0}^{\infty } {{\mathbf{Q}}(u)} dM_{j}^{c} (u)} \), and let \( \psi_{j} = \int_{0}^{\infty } {{\mathbf{Q}}(u)\,} dM_{j}^{c} (u) \)

Finally, \( \begin{aligned} \sum\nolimits_{i = 1}^{n} {\hat{w}_{i} } (R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )){\mathbf{x}}_{i} & = \sum\nolimits_{i = 1}^{n} {w_{i} } (R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )){\mathbf{x}}_{i} + \sum\nolimits_{i = 1}^{n} {(\hat{w}_{i} - w_{i} } )(R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )){\mathbf{x}}_{i} \\ & = \sum\nolimits_{i = 1}^{n} {\left[ {\eta_{i} + \psi_{i} } \right]} \\ \end{aligned} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardiner, J.C. Restricted Mean Survival Time Estimation: Nonparametric and Regression Methods. J Stat Theory Pract 15, 6 (2021).

Download citation

  • Accepted:

  • Published:

  • DOI:


Mathematics Subject Classification