Skip to main content
Log in

Nakagami Distribution with Heavy Tails and Applications to Mining Engineering Data

  • ORIGINAL ARTICLE
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

In this paper we introduce a new extension of the Nakagami distribution. This new distribution is obtained by the quotient of two independent random variables. The quotient consists of a Nakagami distribution divided by a power of the uniform distribution in (0,1). Thus the new distribution has a heavier tail than the Nakagami distribution. In this study we obtain the density function and some important properties for making the inference, such as estimators of moment and maximum likelihood. We examine two sets of real data from the mining industry which show the usefulness of the new model in analyses with high kurtosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  Google Scholar 

  2. Arslan O (2008) An alternative multivariate skew-slash distribution. Stat Probab Lett 78(16):2756–2761

    Article  MathSciNet  Google Scholar 

  3. Gómez HW, Olivares-Pacheco JF, Bolfarine H (2009) An extension of the generalized Birnbaum–Saunders distribution. Stat Probab Lett 79(3):331–338

    Article  MathSciNet  Google Scholar 

  4. Gómez HW, Quintana FA, Torres FJ (2007) A new family of slash-distributions with elliptical contours. Stat Probab Lett 77(7):717–725

    Article  MathSciNet  Google Scholar 

  5. Gómez HW, Venegas O (2008) Erratum to: A new family of slash-distributions with elliptical contours [Statist. Probab. Lett. 77 (2007) 717–725]. Stat Probab Lett 78(14):2273–2274

  6. Iriarte YA, Gómez HW, Varela H, Bolfarine H (2015) Slashed Rayleigh distribution. Revista Colombiana de Estadística 38(1):31–44

    Article  MathSciNet  Google Scholar 

  7. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  8. Kafadar K (1982) A biweight approach to the one-sample problem. J Am Stat Assoc 77(378):416–424

    Article  Google Scholar 

  9. Laurenson D (1994) Nakagami distribution. Indoor radio channel propagation modelling by ray tracing techniques. Accessed date 4 Aug 2007

  10. Lehmann EL (1999) Elements of large-sample theory. Springer, New York

    Book  Google Scholar 

  11. Mosteller F, Tukey JW (1977) Data analysis and regression. Addison-Wesley, Boston

    Google Scholar 

  12. Nakagami M (1960) The m-Distribution, a general formula of intensity of rapid fading. In: Hoffman WC (ed) Statistical methods in radio wave propagation: proceedings of a symposium held June 18–20, 1958, pp 3–36. Pergamon Press, Oxford

  13. Olmos NM, Varela H, Gómez HW, Bolfarine H (2012) An extension of the half-normal distribution. Stat Pap 53:875–886

    Article  MathSciNet  Google Scholar 

  14. Olmos NM, Varela H, Bolfarine H, Gómez HW (2014) An extension of the generalized half-normal distribution. Stat Pap 55:967–981

    Article  MathSciNet  Google Scholar 

  15. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

  16. Rogers WH, Tukey JW (1972) Understanding some long-tailed symmetrical distributions. Stat Neerl 26(3):211–226

    Article  MathSciNet  Google Scholar 

  17. Wang J, Genton MG (2006) The multivariate skew-slash distribution. J Stat Plan Inference 136:209–220

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of J. Reyes , M. Rojas and H. W. Gómez was supported by SEMILLERO UA-2020 (Chile). The research of O. Venegas was supported by Vicerrectoria de Investigación y Posgrado, Universidad Católica de Temuco, Project interno FEQUIP 2019-INRN-03 (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Venegas.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

  • Gamma distribution

    $$\begin{aligned} f_Y(y, \alpha , \beta )&= \frac{1}{\beta ^{\alpha }\varGamma (\alpha )} \,\, y^{\alpha -1} \, e^{-y/\beta } \qquad y \ge 0, \,\, \alpha>0, \,\, \beta >0. \\&\Rightarrow \quad Y \sim Ga(\alpha , \beta ) \end{aligned}$$
  • Chi-square distribution

    $$\begin{aligned} f_Y(y;\nu ) = \frac{1}{2^{\nu /2}\varGamma (\nu /2)} \,\, y^{\nu /2-1} \, e^{-y/2} \qquad y \ge 0, \,\, \nu \ge 0. \quad \Rightarrow \quad Y \sim \chi ^2_{(\nu )} \end{aligned}$$
  • Rayleigh distribution

    $$\begin{aligned} f_Y(y;b) = \frac{y}{b^2} \,\, e^{-y^2/2b^2} \qquad y \ge 0, \,\, b \ge 0 \quad \Rightarrow \quad Y \sim R(b) \end{aligned}$$
  • Beta distribution

    $$\begin{aligned} f_Y(y, \alpha , \beta )&= \frac{\varGamma (\alpha + \beta )}{\varGamma (\alpha )\varGamma (\beta )} \,\, y^{\alpha -1} \, (1-y)^{\beta - 1} \qquad y \ge 0, \,\, \alpha>0, \quad \beta >0.\\&\Rightarrow \quad Y \sim Beta(\alpha , \beta ) \end{aligned}$$
  • Skew-slash distribution

    $$\begin{aligned} f_Y(y, \mu , \sigma , q, \lambda )&= \frac{2}{\sigma \sqrt{2\pi }} \,\, \int _0^1 v^{1/q} \, e^{-\frac{1}{2}(\frac{y-\mu }{\sigma })^2 v^{2/q}} \,\, \varPhi (\lambda \frac{y-\mu }{\sigma }v^{1/q}) \,\, \mathrm{d}v \\&\Rightarrow \quad Y \sim SS(\mu , \sigma , q, \lambda )\\&\quad y \in R,\quad \mu , \lambda \in R, \quad \sigma >0. \end{aligned}$$
  • Digamma function

    $$\psi (z) = \frac{{{\text{d}}\ln \Gamma (z)}}{{{\text{d}}z}} = \frac{{\Gamma ^{'} (z)}}{{\Gamma (z)}}$$
  1. 1.

    Rubidium concentration dataset

61

145

45

81

179

83

93

115

165

111

110

95

118

5

2

44

86

148

199

116

14

136

85

80

101

77

112

12

56

57

134

79

118

156

144

39

95

32

43

86

93

95

55

61

23

37

64

87

36

43

177

34

102

82

85

155

78

85

140

73

7

95

75

62

76

79

54

95

30

117

54

82

16

112

40

62

406

144

95

101

47

114

49

151

133

59

     
  1. 2.

    Zinc concentration dataset.

31

51

92

1

47

11

29

17

17

47

25

22

45

6

1165

80

12

22

115

455

93

93

81

115

63

75

92

79

113

277

118

113

76

406

69

86

58

79

86

61

69

80

86

74

79

70

65

78

78

66

61

113

12

45

141

111

70

500

67

22

24

63

22

36

29

74

24

43

354

97

30

94

20

311

67

40

47

203

21

17

40

36

78

19

42

77

     

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, J., Rojas, M.A., Venegas, O. et al. Nakagami Distribution with Heavy Tails and Applications to Mining Engineering Data. J Stat Theory Pract 14, 55 (2020). https://doi.org/10.1007/s42519-020-00122-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s42519-020-00122-7

Keywords

Navigation