Skip to main content
Log in

A Method of Estimating the Partial Power Spectrum of a Bivariate Point Process and an Application to a Neurophysiological Data Set

  • ORIGINAL ARTICLE
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

In this paper, we present a method of estimating the partial power spectrum of a bivariate point process. The method is based on the simple and cross-periodograms which are smoothed by applying a simple averaging weighting scheme in order to improve the properties of the estimate. The asymptotic distribution of the estimate is shown to be approximately normal when the amount of smoothing is large. An illustrative example is presented from the field of Neurophysiology when the complex system of the muscle spindle is affected by a static gamma motoneuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brillinger DR (1975) The identification of point process systems. Ann Probab 3(6):909–924

    MathSciNet  MATH  Google Scholar 

  2. Brillinger DR, Bryant HL, Segundo JP (1976) Identification of synaptic interactions. Biol Cybern 22(4):213–228

    MATH  Google Scholar 

  3. Cox DR, Isham V (1980) Point processes. CRC Press, London

    MATH  Google Scholar 

  4. Rigas AG (1992) Spectral analysis of stationary point processes using the fast fourier transform algorithm. J Time Ser Anal 13(5):441–450

    MathSciNet  MATH  Google Scholar 

  5. Rigas AG (1996) Spectral analysis of a stationary bivariate point process with applications to neurophysiological problems. J Time Ser Anal 17(2):171–187

    MathSciNet  MATH  Google Scholar 

  6. Haduch-Sendecka A, Pietruszka M, Zajdel P (2014) Power spectrum, growth velocities and cross-correlations of longitudinal and transverse oscillations of individual nicotiana tabacum pollen tube. Planta 240(2):263–276

    Google Scholar 

  7. Wang R, Wang J, Yu H, Wei X, Yang C, Deng B (2015) Power spectral density and coherence analysis of alzheimer’s eeg. Cognit Neurodyn 9(3):291–304

    Google Scholar 

  8. Sherman MA, Barton AR, Lodato MA, Vitzthum C, Coulter ME, Walsh CA, Park PJ (2018) Pasd-qc: quality control for single cell whole-genome sequencing data using power spectral density estimation. Nucleic Acids Res 46(4):e20. https://doi.org/10.1093/nar/gkx1195

    Article  Google Scholar 

  9. Daley D, Vere-Jones D (1988) An introduction to the theory of point processes. Springer, Berlin

    MATH  Google Scholar 

  10. Bartlett MS (1963) The spectral analysis of point processes. J Royal Statistic Soc Ser B (Methodol) 25(2):264–281

    MathSciNet  MATH  Google Scholar 

  11. Brillinger DR (1975) Estimation of product densities. In: Proceedings of the computer science and statistics 8th annual symposium at the Interface, pp 431–438

  12. Brillinger DR (2001) Time series: data analysis and theory. SIAM, New York

    MATH  Google Scholar 

  13. Bloomfield P (2000) Fourier analysis of time series: an introduction, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  14. Brillinger DR (1978) Comparative aspects of the study of ordinary time series and of point processes. In: Developments in statistics, vol 1, Elsevier, pp 33–133

  15. Diggle PJ (1990) Time series: a biostatistical introduction. Clarendon Press, Oxford

    MATH  Google Scholar 

  16. Priestley MB (1981) Spectral analysis and time series: probability and mathematical statistics. Academic Press, London

    Google Scholar 

  17. Boyd IA (1962) The structure and innervation of the nuclear bag muscle fibre system and the nuclear chain muscle fibre system in mammalian muscle spindles. Philos Trans Royal Soc Lond Ser B Biol Sci 245(720):81–136

    Google Scholar 

  18. Boyd IA (1980) The isolated mammalian muscle spindle. Trends Neurosci 3(11):258–265

    Google Scholar 

  19. Matthews PB (1981) Evolving views on the internal operation and functional role of the muscle spindle. J Physiol 320(1):1–30

    MathSciNet  Google Scholar 

  20. Johansson H (1981) Reflex control of \(\gamma\)-motoneurones. Umea Univ Med Dissert 68:55–57

    Google Scholar 

  21. Proske U, Wise AK, Gregory JE (2000) The role of muscle receptors in the detection of movements. Prog Neurobiol 60(1):85–96

    Google Scholar 

  22. Proske U, Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92(4):1651–1697

    Google Scholar 

  23. Gentleman WM, Sande G (1966) Fast fourier transforms: for fun and profit. In: Proceedings of the Fall joint computer conference, November 7–10, 1966, pp 563–578

  24. Tsitsis DS, Karavasilis GJ, Rigas AG (2012) Measuring the association of stationary point processes using spectral analysis techniques. Statistic Methods Appl 21(1):23–47

    MathSciNet  MATH  Google Scholar 

  25. Vassiliadis VG, Spyroglou II, Rigas AG, Rosenberg J, Lindsay K (2019) Dealing with the phenomenon of quasi-complete separation and a goodness of fit test in logistic regression models in the case of long data sets. Statistics Biosci 11(3):567–596

    Google Scholar 

  26. Spyroglou II, Rigas AG (2018) A two-step bayesian approach for modeling a complex neurophysiological system. Int J Biol Biomed Eng 12:66–74

    Google Scholar 

  27. Brockwell PJ, Davis RA (1991) Time series: theory and methods. Springer, New York

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are most grateful to Professor Ken Linsday and to Professor Jay Rosenberg for their kindness to provide the Neurophysiological data set.

Funding

This work was supported by European Regional Development Fund-Project “SINGING PLANT” \((No.\,CZ.02.1.01/0.0/0.0/16\_026/0008446)\) which received a financial contribution from the Ministry of Education, Youths and Sports of the Czech Republic in the form of special support through the National Program for Sustainability II funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis I. Spyroglou.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Part of special issue guest edited by Dieter Rasch, Jürgen Pilz, and Subir Ghosh—Advances in Statistical and Simulation Methods.

Appendix

Appendix

1.1 Proofs of Theorems

  • Proof of Theorem 1 Let \(g: \; R^3\rightarrow R\) be a differentiable function with \(g(x,y,z)=\frac{xy}{z},\; z \ne 0\). By setting \(x=f_{kl}(\lambda ), \; y=f_{lk}(\lambda )\) and \(z=f_{ll}(\lambda )\), and using the multivariate delta method, we get that [27]:

    $$\begin{aligned} g(\hat{x},\hat{y},\hat{z})-g(x,y,z)=\frac{f_{kl}^{(T)}(\lambda ) f_{lk}^{(T)}(\lambda )}{f_{ll}^{(T)}(\lambda )}-\frac{f_{kl}(\lambda )f_{lk}(\lambda )}{f_{ll}(\lambda )}, \end{aligned}$$

    which can be expressed as follows:

    $$\begin{aligned}&g(\hat{x},\hat{y},\hat{z})-g(x,y,z)=\frac{\partial g}{\partial x}(\hat{x}-x)+\frac{\partial g}{\partial y}(\hat{y}-y)+ \frac{\partial g}{\partial z}(\hat{z}-z)\\&\quad =\frac{f_{lk}(\lambda )}{f_{ll}(\lambda )} \lbrace f_{kl}^{(T)}(\lambda )-f_{kl}(\lambda ) \rbrace +\frac{f_{kl}(\lambda )}{f_{ll}(\lambda )} \lbrace f_{lk}^{(T)}(\lambda )-f_{lk}(\lambda ) \rbrace \\&\qquad -\frac{f_{kl}(\lambda )f_{lk}(\lambda )}{f_{ll}^2(\lambda )} \lbrace f_{ll}^{(T)}(\lambda )-f_{ll}(\lambda ) \rbrace . \end{aligned}$$

    On using definitions (3) and (13), we find

    $$\begin{aligned} f_{kk.l}^{(T)}(\lambda )-f_{kk.l}(\lambda )= & {} \lbrace f_{kk}^{(T)}(\lambda )-f_{kk}(\lambda ) \rbrace - \frac{f_{lk}(\lambda )}{f_{ll}(\lambda )} \lbrace f_{kl}^{(T)}(\lambda )-f_{kl}(\lambda ) \rbrace \nonumber \\&-\frac{f_{kl}(\lambda )}{f_{ll}(\lambda )}\lbrace f_{lk}^{(T)}(\lambda )-f_{lk}(\lambda ) \rbrace + \frac{f_{kl}(\lambda )f_{lk}(\lambda )}{f_{ll}^2(\lambda )} \lbrace f_{ll}^{(T)}(\lambda )-f_{ll}(\lambda ) \rbrace . \end{aligned}$$
    (17)

    It now follows from (17) that:

    $$\begin{aligned} E \lbrace f_{kk.l}^{(T)}(\lambda ) \rbrace \simeq f_{kk.l}(\lambda ), \end{aligned}$$

    since \(E \lbrace f_{kk}^{(T)}(\lambda ) \rbrace \simeq f_{kk}(\lambda )\) and \(E \lbrace f_{kl}^{(T)}(\lambda ) \rbrace \simeq f_{kl}(\lambda ), \; (k \ne l)\). The covariance between \(f_{kk.l}^{(T)}(\lambda )\) and \(f_{kk.l}^{(T)}(\mu )\) is obtained as follows:

    $$\begin{aligned} \mathrm {Cov} \lbrace f_{kk.l}^{(T)}(\lambda )-f_{kk.l}(\lambda ),f_{kk.l}^{(T)}(\mu )-f_{kk.l}(\mu ) \rbrace =\mathrm {Cov} \lbrace f_{kk.l}^{(T)}(\lambda ),f_{kk.l}^{(T)}(\mu ) \rbrace \end{aligned}$$

    and

    $$\begin{aligned}&\mathrm {Cov} \lbrace f_{kk.l}^{(T)}(\lambda ),f_{kk.l}^{(T)}(\mu ) \rbrace =\mathrm {Cov} \lbrace f_{kk}^{(T)}(\lambda ),f_{kk}^{(T)}(\mu ) \rbrace - \frac{f_{lk}(-\mu )}{f_{ll}(\mu )} \mathrm {Cov} \lbrace f_{kk}^{(T)}(\lambda ),f_{kl}^{(T)}(\mu ) \rbrace \\&\quad -\frac{f_{kl}(-\mu )}{f_{ll}(\mu )} \mathrm {Cov} \lbrace f_{kk}^{(T)}(\lambda ),f_{lk}^{(T)}(\mu ) \rbrace + \frac{\mid f_{lk}(\mu ) \mid ^2}{f_{ll}^2 (\mu )}\mathrm {Cov} \lbrace f_{kk}^{(T)}(\lambda ),f_{ll}^{(T)}(\mu ) \rbrace \\&\quad - \frac{f_{lk}(\lambda )}{f_{ll}(\lambda )} \mathrm {Cov} \lbrace f_{kl}^{(T)}(\lambda ),f_{kk}^{(T)}(\mu ) \rbrace + \frac{f_{lk}(\lambda )}{f_{ll}(\lambda )} \frac{f_{lk}(-\mu )}{f_{ll}(\mu )}\mathrm {Cov} \lbrace f_{kl}^{(T)}(\lambda ),f_{kl}^{(T)}(\mu ) \rbrace \\&\quad +\frac{f_{lk}(\lambda )}{f_{ll}(\lambda )} \frac{f_{kl}(-\mu )}{f_{ll}(\mu )}\mathrm {Cov} \lbrace f_{kl}^{(T)}(\lambda ),f_{lk}^{(T)}(\mu ) \rbrace - \frac{f_{lk}(\lambda )}{f_{ll}(\lambda )} \frac{\mid f_{kl}(\mu ) \mid ^2}{f_{ll}^2 (\mu )} \mathrm {Cov} \lbrace f_{kl}^{(T)}(\lambda ),f_{ll}^{(T)}(\mu ) \rbrace \\&\quad - \frac{f_{kl}(\lambda )}{f_{ll}(\lambda )} \mathrm {Cov} \lbrace f_{lk}^{(T)}(\lambda ),f_{kk}^{(T)}(\mu ) \rbrace + \frac{f_{kl}(\lambda )}{f_{ll}(\lambda )} \frac{f_{lk}(-\mu )}{f_{ll}(\mu )} \mathrm {Cov} \lbrace f_{lk}^{(T)}(\lambda ),f_{kl}^{(T)}(\mu ) \rbrace \\&\quad + \frac{f_{kl}(\lambda )}{f_{ll}(\lambda )} \frac{f_{kl}(-\mu )}{f_{ll}(\mu )} \mathrm {Cov} \lbrace f_{lk}^{(T)}(\lambda ),f_{lk}^{(T)}(\mu ) \rbrace -\frac{f_{kl}(\lambda )}{f_{ll}(\lambda )} \frac{\mid f_{kl}(\mu ) \mid ^2}{f_{ll}^2 (\mu )} \mathrm {Cov} \lbrace f_{lk}^{(T)}(\lambda ),f_{ll}^{(T)}(\mu ) \rbrace \\&\quad + \frac{\mid f_{kl}(\lambda ) \mid ^2}{f_{ll}^2(\lambda )} \mathrm {Cov} \lbrace f_{ll}^{(T)}(\lambda ),f_{kk}^{(T)}(\mu ) \rbrace - \frac{\mid f_{kl}(\lambda ) \mid ^2}{f_{ll}^2(\lambda )} \frac{f_{lk}(-\mu )}{f_{ll}(\mu )} \mathrm {Cov} \lbrace f_{ll}^{(T)}(\lambda ),f_{kl}^{(T)}(\mu ) \rbrace \\&\quad -\frac{\mid f_{kl}(\lambda ) \mid ^2}{f_{ll}^2(\lambda )} \frac{f_{kl}(-\mu )}{f_{ll}(\mu )} \mathrm {Cov} \lbrace f_{ll}^{(T)}(\lambda ),f_{lk}^{(T)}(\mu ) \rbrace \\&\quad + \frac{\mid f_{kl}(\lambda ) \mid ^2}{f_{ll}^2(\lambda )} \frac{\mid f_{kl}(\mu ) \mid ^2}{f_{ll}^2(\mu )} \mathrm {Cov} \lbrace f_{ll}^{(T)}(\lambda ),f_{ll}^{(T)}(\mu ) \rbrace , \end{aligned}$$

    since \(f_{lk}(\lambda )=f_{kl}(-\lambda )\), \(\mid f_{lk}(\lambda ) \mid ^2 = \mid f_{kl}(\lambda ) \mid ^2\) and

    $$\begin{aligned} \mathrm {Cov} \lbrace f_{kl}^{(T)} (\lambda ), a(\lambda )f_{kl}^{(T)}(\mu ) \rbrace = \overline{a(\lambda )} \mathrm {Cov} \lbrace f_{kl}^{(T)} (\lambda ), f_{kl}^{(T)}(\mu ) \rbrace , \end{aligned}$$

    where \(\overline{a(\lambda )}\) is the conjugate function of the complex function \(a(\lambda )\). If we substitute in the above relation the covariances from (12), we obtain the required result. If we set \(\lambda =\mu\) in the \(\mathrm {Cov} \lbrace f_{kk.l}^{(T)} (\lambda ), f_{kk.l}^{(T)}(\mu ) \rbrace\), we get

    $$\begin{aligned}&\mathrm {Var} \lbrace f_{kk.l}^{(T)}(\lambda ) \rbrace \simeq \frac{S}{T} \frac{C_p}{2m+1} \left[f_{kk}^2 (\lambda )-\frac{f_{kl}(\lambda )f_{kl}(-\lambda )f_{kk}(\lambda )}{f_{ll}(\lambda )}\right.\\&\left. \qquad -\frac{\mid f_{kl}(\lambda ) \mid ^2}{f_{ll}(\lambda )}f_{kk}(\lambda )+\frac{\mid f_{kl}(\lambda ) \mid ^2 f_{kl}(\lambda ) f_{kl}(-\lambda )}{f_{ll}^2(\lambda )}-\frac{\mid f_{kl}(\lambda ) \mid ^2 f_{kk}(\lambda )}{f_{ll}(\lambda )}\right.\\\\&\left.\qquad +\frac{\mid f_{kl}(\lambda ) \mid ^2 f_{kk}(\lambda )}{f_{ll}(\lambda )}+\frac{\mid f_{kl}(\lambda ) \mid ^2 \mid f_{kl}(\lambda ) \mid ^2}{f_{ll}^2(\lambda )}-\frac{\mid f_{kl}(\lambda ) \mid ^2 \mid f_{lk}(\lambda ) \mid ^2}{f_{ll}^2(\lambda )}\right.\\&\left.\qquad -\frac{\mid f_{lk}(\lambda ) \mid ^2 f_{kk}(\lambda )}{f_{ll}(\lambda )}+ \frac{\mid f_{kl}(\lambda ) \mid ^2 \mid f_{kl}(\lambda ) \mid ^2}{f_{ll}^2(\lambda )}+\frac{f_{kl}(\lambda )f_{kl}(-\lambda )f_{kk}(\lambda )}{f_{ll}(\lambda )}\right.\\&\left. \qquad - \frac{\mid f_{kl}(\lambda ) \mid ^2 f_{kl}(\lambda )f_{kl}(-\lambda )}{f_{ll}^2(\lambda )}+\frac{\mid f_{kl}(\lambda ) \mid ^2 f_{lk}(\lambda )f_{lk}(-\lambda )}{f_{ll}^2(\lambda )}-\frac{\mid f_{kl}(\lambda ) \mid ^2 \mid f_{kl}(\lambda ) \mid ^2}{f_{ll}^2(\lambda )}\right.\\&\qquad \left. -\frac{\mid f_{kl}(\lambda ) \mid ^2 f_{lk}(\lambda )f_{lk}(-\lambda )}{f_{ll}^2(\lambda )}+\frac{\mid f_{kl}(\lambda ) \mid ^2 \mid f_{kl}(\lambda ) \mid ^2}{f_{ll}^2(\lambda )} \right]\\&\quad =\frac{S}{T}\frac{C_p}{2m+1} \left [f_{kk}^2(\lambda )-\frac{2\mid f_{kl}(\lambda ) \mid ^2 f_{kk}(\lambda )}{f_{ll}(\lambda )}+\frac{\mid f_{kl}(\lambda ) \mid ^2 \mid f_{kl}(\lambda ) \mid ^2}{f_{ll}^2(\lambda )}\right]\\&\quad =\frac{S}{T}\frac{C_p}{2m+1} f_{kk}^2(\lambda )\left[1-2 \mid R_{kl}(\lambda ) \mid ^2 + \mid R_{kl}(\lambda ) \mid ^4 \right]\\&\quad =\frac{S}{T}\frac{C_p}{2m+1}\left [f_{kk}(\lambda )(1-\mid R_{kl}(\lambda ) \mid ^2)\right]^2=\frac{S}{T}\frac{C_p}{2m+1}f_{kk.l}^2(\lambda ). \end{aligned}$$
  • Proof of Proposition 1 The distribution of \(f_{kk}^{(T)}(\lambda _j)\) is a multiple of a \(\chi ^2\)-distribution with \(2(2m+1)\) degrees of freedom. Moreover, the variates \(\lbrace f_{kk}^{(T)}(\lambda _j) \rbrace ,\, j=1,2,\ldots ,J\) are asymptotically independent distributed. For large m, the variates \(\lbrace f_{kk}^{(T)}(\lambda _j) \rbrace ,\, j=1,2,\ldots ,J\) are asymptotically independent normally distributed. Also, the distribution of \(f_{kl}^{(T)}(\lambda _j)\) follows a Wishart distribution, \(\frac{1}{2m+1}W_1^C \lbrace 2m+1, f_{kl}(\lambda _j) \rbrace\). The variates \(\lbrace f_{kl}^{(T)}(\lambda _j) \rbrace ,\, j=1,2,\ldots ,J\) are asymptotically independent distributed. For large m the Wishart distribution tends to a normal distribution. For more details refer to [12].

    For large m, the estimate of PPS approximated by (17) is the sum of 4 independent normal distributions, therefore tends to a normal distribution with mean and variance obtained in Theorem 1.

  • Proof of Proposition 2: This follows in the same way as the logarithm to base 10 of the estimate of the PS [12].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michailidis, G.E., Spyroglou, I.I., Zaridis, D. et al. A Method of Estimating the Partial Power Spectrum of a Bivariate Point Process and an Application to a Neurophysiological Data Set. J Stat Theory Pract 14, 36 (2020). https://doi.org/10.1007/s42519-020-00105-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s42519-020-00105-8

Keywords

Navigation