Skip to main content
Log in

Estimation and Testing Procedures for the Reliability Functions of Kumaraswamy-G Distributions and a Characterization Based on Records

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

In this article, characterization based on record values for Kumaraswamy-G distributions is provided. Two measures of reliability are considered, namely R(t) = P(X > t) and P = P(X > Y). Point and interval estimation procedures are developed for unknown parameter(s), R(t) and P, based on records. Two types of point estimators are considered, namely (1) uniformly minimum variance unbiased estimators and (2) maximum likelihood estimators. Testing procedures are also developed for the hypotheses related to various parametric functions. A comparative study of different methods of estimation is done through simulation studies. Real data example is used to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahsanullah M (1995) Record statistics. Nova Science Publishers, New York

    MATH  Google Scholar 

  2. Ahsanullah M, Shakil M, Golam Kibria BM (2013) A characterization of power function distribution based on lower records. ProbStat Forum 06:68–72

    MathSciNet  MATH  Google Scholar 

  3. Arnold BC, Balakrishnan N, Nagraja HN (1998) Records. John Wiley, New York

    Book  MATH  Google Scholar 

  4. Arnold BC, Balakrishnan N, Nagaraja HN (1992) A first course in order statistics. Wiley, New York

    MATH  Google Scholar 

  5. Awad AM, Gharraf MK (1986) Estimation of P(Y < X) in the Burr case: a comparative study. Commun Stat Simul Comput 15(2):389–403

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartholomew DJ (1963) The sampling distribution of an estimate arising in life testing. Technometrics 5:361–374

    Article  MathSciNet  MATH  Google Scholar 

  7. Basu AP (1964) Estimates of reliability for some distributions useful in life testing. Technometrics 6:215–219

    Article  Google Scholar 

  8. Bilodeau GG, Thie PR, Keough GF (2010) An introduction to analysis. Jones and Bartlett, London

    Google Scholar 

  9. Brent R (1973) Algorithms for minimization without derivatives. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  10. Chandler KN (1952) The distribution and frequency of record values. J R Stat Soc B14:220–228

    MathSciNet  MATH  Google Scholar 

  11. Chao A (1982) On comparing estimators of Pr{X > Y} in the exponential case. IEEE Trans Reliab R26:389–392

    Article  MATH  Google Scholar 

  12. Chaturvedi A, Pathak A (2012) Estimation of the reliability functions for exponentiated Weibull distribution. J Stat Appl 7:1–8

    Google Scholar 

  13. Chaturvedi A, Pathak A (2013) Bayesian estimation procedures for three parameter exponentiated Weibull distribution under entropy loss function and type II censoring. http://interstat.statjournals.net/YEAR/2013/abstracts/1306001.php. Accessed 3 June 2013

  14. Chaturvedi A, Pathak A (2014) Estimating the reliability function for a family of exponentiated distributions. J Probab Stat. https://doi.org/10.1155/2014/563093

    Article  MathSciNet  MATH  Google Scholar 

  15. Chaturvedi A, Pathak A (2015) Bayesian estimation procedures for three-parameter exponentiated-Weibull distribution under squared-error loss function and type II censoring. World Eng Appl Sci J 6(1):45–58

    Google Scholar 

  16. Chaturvedi A, Kang SB, Pathak A (2016) Estimation and testing procedures for the reliability functions of generalized half logistic distribution. J Korean Stat Soc 45:314–328

    Article  MathSciNet  MATH  Google Scholar 

  17. Chaturvedi A, Kumari T (2015) Estimation and testing procedures for the reliability functions of a family of lifetime distributions. http://interstat.statjournals.net/YEAR/2015/abstracts/1504001.php, http://interstat.statjournals.net/INDEX/Apr15.html. Accessed 19 Apr 2015

  18. Chaturvedi A, Kumari T (2016) Estimation and testing procedures for the reliability functions of a general class of distributions. Commun Stat Theory Methods 46(22):11370–11382

    Article  MathSciNet  MATH  Google Scholar 

  19. Chaturvedi A, Rani U (1997) Estimation procedures for a family of density functions representing various life-testing models. Metrika 46:213–219

    Article  MathSciNet  MATH  Google Scholar 

  20. Chaturvedi A, Rani U (1998) Classical and Bayesian reliability estimation of the generalized Maxwell failure distribution. J Stat Res 32:113–120

    MathSciNet  Google Scholar 

  21. Chaturvedi A, Singh KG (2008) A family of lifetime distributions and related estimation and testing procedures for the reliability function. J Appl Stat Sci 16:35–50

    MathSciNet  Google Scholar 

  22. Chaturvedi A, Surinder K (1999) Further remarks on estimating the reliability function of exponential distribution under Type I and Type II censorings. Braz J Probab Stat 13:29–39

    MathSciNet  MATH  Google Scholar 

  23. Chaturvedi A, Tomer SK (2002) Classical and Bayesian reliability estimation of the negative binomial distribution. J Appl Syst Stud 11:33–43

    MathSciNet  MATH  Google Scholar 

  24. Chaturvedi A, Tomer SK (2003) UMVU estimation of the reliability function of the generalized life distributions. Stat Pap 44:301–313

    Article  MathSciNet  MATH  Google Scholar 

  25. Constantine K, Karson M, Tse SK (1986) Estimators of P(Y < X) in the gamma case. Commun Stat Simul Comput 15:365–388

    Article  MATH  Google Scholar 

  26. Cordeiro GM, De Castro M (2011) A new family of generalized distributions. J Stat Comput Simul 81(7):883–898

    Article  MathSciNet  MATH  Google Scholar 

  27. Franco M, Ruiz JM (1996) On characterization of continuous distributions by conditional expectation of record values. Sankhya Ser A 58:135–141

    MathSciNet  MATH  Google Scholar 

  28. Johnson NL (1975) Letter to the editor. Technometrics 17:393

    Article  MathSciNet  Google Scholar 

  29. Kelley GD, Kelley JA, Schucany WR (1976) Efficient estimation of P(Y < X) in the exponential case. Technometrics 18:359–360

    MathSciNet  MATH  Google Scholar 

  30. Khan AH, Alzaid AA (2004) Characterization of distributions through linear regression of non-adjacent generalized order statistics. J Appl Stat Sci 13:123–136

    MathSciNet  MATH  Google Scholar 

  31. Kumari T, Pathak A (2013) Recurrence relations for single and product moments of record values from Chen distribution and a characterization. World Appl Sci J 27(12):1812–1815

    Google Scholar 

  32. Kumari T, Pathak A (2014) Relations for moments of generalized order statistics from Chen distribution and its characterization. J Comb Inf Syst Sci 39:49–56

    MATH  Google Scholar 

  33. Kumari T, Pathak A (2014) Conditional expectation of certain distributions of dual generalized order statistics. Int J Math Anal 08(3):141–148

    Article  MathSciNet  Google Scholar 

  34. Kumari T, Pathak A (2014c) Recurrence relations for single and product moments of generalized order statistics from generalized power Weibull distribution and its characterization. Int J Sci Eng Res 5(1):1914–1917

    Google Scholar 

  35. Kumaraswamy P (1980) A generalized probability density function for double bounded random process. J Hydrol 46:79–88

    Article  Google Scholar 

  36. Lehmann EL (1959) Testing statistical hypotheses. Wiley, New York

    MATH  Google Scholar 

  37. Nadarajah S, Cordeiro GM, Ortega EMM (2012) General results for the Kumaraswamy-G distributions. J Stat Comput Simul 82:951–979

    Article  MathSciNet  MATH  Google Scholar 

  38. Nagaraja HN (1988) Some characterizations of continuous distributions based on regressions of adjacent order statistics and record values. Sankhya Ser A 50:70–73

    MathSciNet  MATH  Google Scholar 

  39. Pathak A, Chaturvedi A (2013) Estimation of the reliability function for four-parameter exponentiated generalized lomax distribution. IJSER 5(1):1171–1180

    Google Scholar 

  40. Pathak A, Chaturvedi A (2014) Estimation of the reliability function for two-parameter exponentiated Rayleigh or Burr type X distribution. Stat Optim Inf Comput 2:305–322

    Article  MathSciNet  Google Scholar 

  41. Proschan F (1963) Theoretical explanation of observed decreasing failure rate. Technometrics 15:375–383

    Article  MathSciNet  Google Scholar 

  42. Pugh EL (1963) The best estimate of reliability in the exponential case. Oper Res 11:57–61

    Article  MATH  Google Scholar 

  43. Raqab MZ (2002) Inferences for generalized exponential distribution based on record statistics. J Stat Plan Inference 104(2):339–350

    Article  MathSciNet  MATH  Google Scholar 

  44. Rasouli A, Balakrishnan N (2010) Exact likelihood inference for two exponential populations under joint progressive type-II censoring. Commun Stat Theory Methods 39:2172–2191

    Article  MathSciNet  MATH  Google Scholar 

  45. Rohatgi VK, Saleh AKMdE (2012) An introduction to probability and statistics. Wiley, New York

    MATH  Google Scholar 

  46. Sathe YS, Shah SP (1981) On estimation P(Y < X) for the exponential distribution. Commun Stat Theory Methods 10:39–47

    Article  MATH  Google Scholar 

  47. Tamandi M, Nadarajah S (2016) On the estimation of parameters of Kumaraswamy-G distributions. Commun Stat Simul Comput 45:3811–3821

    Article  MathSciNet  MATH  Google Scholar 

  48. Tong H (1974) A note on the estimation of P(Y < X) in the exponential case. Technometrics 16:625

    MathSciNet  MATH  Google Scholar 

  49. Tyagi RK, Bhattacharya SK (1989) A note on the MVU estimation of reliability for the Maxwell failure distribution. Estadistica 41:73–79

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the editor and referees for their valuable suggestions and comments which led to considerable improvement in the original version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, T., Chaturvedi, A. & Pathak, A. Estimation and Testing Procedures for the Reliability Functions of Kumaraswamy-G Distributions and a Characterization Based on Records. J Stat Theory Pract 13, 22 (2019). https://doi.org/10.1007/s42519-018-0014-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s42519-018-0014-7

Keywords

Navigation