Skip to main content
Log in

GCGE: a package for solving large scale eigenvalue problems by parallel block damping inverse power method

  • Regular Paper
  • Published:
CCF Transactions on High Performance Computing Aims and scope Submit manuscript

Abstract

In this paper, we introduce some strategies to improve the efficiency and scalability of the generalized conjugate gradient algorithm and build a package GCGE for solving large scale eigenvalue problems. This method is the combination of damping idea, subspace projection method and inverse power algorithm with dynamic shifts. To reduce the dimensions of projection subspaces, a moving mechanism is developed when the number of desired eigenpairs is large. The numerical methods, implementing techniques and the structure of the package are presented. Plenty of numerical results are provided to demonstrate the efficiency, stability and scalability of the concerned eigensolver and the package GCGE for computing many eigenpairs of large symmetric matrices arising from applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. https://sparse.tamu.edu.

References

  • Amestoy, P.. R., Buttari, A., L’Excellent, J.. Y., Mary, T.: Performance and scalability of the block low-rank multifrontal factorization on multicore architectures. ACM Trans. Math. Software 45(1), 21–226 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Amestoy, Patrick. R., Duff, Iain S., Koster, Jacko, L’Excellent, Jean Yves: fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis & Applications 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., GreenBaum, A., Hammarling, S., Mckenney, A., Sorensen, D.: LAPACK Users’ Guide. SIAM (1999)

  • Bai, Zhaojun, Demmel, James, Dongarra, Jack, Ruhe, Axel, van der Vorst, Henk: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Vol. 11. SIAM (2000)

  • Balay, Satish, Gropp, William D., McInnes, Lois Curfman, Smith, Barry F.: Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools in Scientific Computing. . Birkhäuser Press (1997)

    MATH  Google Scholar 

  • Duersch, Meiyue, amd Shao, Jed A., Yang, Chao: Robust and Efficient Implementation of LOBPCG. SIAM Journal on Scientific Computing 40(5), 655–676 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Falgout, Robert D , Jones, Jim E, Yang, Ulrike Meier: The design and implementation of hypre, a library of parallel high performance preconditioners. In Numerical Solution of Partial Differential Equations on Parallel Computers. Springer, 267–294 (2006)

  • Hernandez, Vicente, Roman, Jose E., Vidal, Vicente: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software 31(3), 351–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Hetmaniuk, U., Lehoucq, R.: Basis selection in LOBPCG. J. Comput. Phys. 218(1), 324–332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Knyazev, Andrew V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM Journal on Scientific Computing 23(2), 517–541 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Knyazev, Andrew V., Argentati, Merico E., Lashuk, Ilya, Ovtchinnikov, Evgueni E.: Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSc. SIAM Journal on Scientific Computing 29(5), 2224–2239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Knyazev, Andrew V., Neymeyr, Klaus: Efficient solution of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method. Electronic Transactions on Numerical Analysis 15(2003), 38–55 (2003)

    MathSciNet  MATH  Google Scholar 

  • Kronik, Leeor, Makmal, Adi, Tiago, Murilo L., Alemany, M..M..G., Jain, Manish, Huang, Xiangyang, Saad, Yousef, Chelikowsky, James R.: PARSEC – the pseudopotential algorithm for real-space electronic structure calculations: recent advances and novel applications to nano-structures. Physica Status Solidi 243(5), 1063–1079 (2006)

    Article  Google Scholar 

  • Li, Yu., Xie, Hehu, Ran, Xu., You, Chun’Guang., Zhang, Ning: A parallel generalized conjugate gradient method for large scale eigenvalue problems. CCF Transactions on High Performance Computing 2(2020), 111–122 (2020)

    Article  Google Scholar 

  • Natan, Amir, Benjamini, Ayelet, Naveh, Doron, Kronik, Leeor, Tiago, Murilo L., Beckman, Scott P., Chelikowsky, James R.: Real-space pseudopotential method for first principles calculations of general periodic and partially periodic systems. Physical Review B 78(7), 75–109 (2008)

    Article  Google Scholar 

  • Saad, Youcef : Numerical Methods for Large Eigenvalue Problems. Vol. 158. SIAM (1992)

  • Saad, Yousef, Chelikowsky, James R., Shontz, Suzanne M.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52(1), 3–54 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart, G.W.: Block Gram-Schmidt Orthogonalization. SIAM Journal on Entific Computing 31(1), 761–775 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Yokozawa, Takuya, Takahashi, Daisuke, Boku, Taisuke, Sato, Mitsuhisa: Efficient parallel implementation of classical Gram-Schmidt orthogonalization using matrix multiplication. In Proceedings of Fourth International Workshop on Parallel matrix Algorithms and Applications (PMAA’06). 37–38 (2006)

  • Zhang, Linbo: A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection. Numerical Mathematics: Theory, Methods and Applications 2(2009), 65–89 (2009)

    MathSciNet  MATH  Google Scholar 

  • Zhang, N.Y., Li, H.X., Ran, X., You, C.: A generalized conjugate gradient method for eigenvalue problems. Sci. Sin. Math. 50(12), 1–24 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hehu Xie.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

This research is supported partly by National Key R &D Program of China 2019YFA0709600, 2019YFA0709601, Science Challenge Project (No. TZ2016002), the National Center for Mathematics and Interdisciplinary Science, CAS, and Tianjin Education Commission Scientific Research Plan (2017KJ236).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, Z. & Xie, H. GCGE: a package for solving large scale eigenvalue problems by parallel block damping inverse power method. CCF Trans. HPC 5, 171–190 (2023). https://doi.org/10.1007/s42514-023-00135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42514-023-00135-1

Keywords

Mathematics Subject Classification

Navigation