Skip to main content
Log in

A parallel generalized conjugate gradient method for large scale eigenvalue problems

  • Regular Paper
  • Published:
CCF Transactions on High Performance Computing Aims and scope Submit manuscript

Abstract

Based on damping blocked inverse power method, a type of generalized parallel conjugate gradient method is proposed for large scale eigenvalue problems. Techniques for orthogonalization and computing Rayleigh-Ritz problems are introduced to improve the stability, efficiency and scalability. Furthermore, a computing package is built based on the proposed method here. Some numerical tests are provided to validate the stability, efficiency and scalability of the method in this paper. The corresponding computing package can be downloaded from the web site:  https://github.com/pase2017/GCGE-1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://sparse.tamu.edu.

References

  • Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, Society for industrial and applied mathematics, 3-rd Version, (1999)

  • Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  • Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries. Modern Software Tools for Scientific Computing. Birkhäuser, Boston, MA (1997)

    Chapter  Google Scholar 

  • Duersch, J.A., Shao, M., Yang, C., Gu, M.: A robust and efficient implementation of LOBPCG. SIAM J. Sci. Comput. 40(5), C655–C676 (2018)

    Article  MathSciNet  Google Scholar 

  • Fan, X., Chen, P., Wu, R., Xiao, S.: Parallel compiting study of large scale modal analysis based on the Jacobi–Davidson algorithm. J. Vib. Shock 33(1), 203–208 (2014)

    Google Scholar 

  • Fan, X., Xiao, S., Chen, P.: Parallel computing study on finite element modal analysis over ten-million degrees of freedom. J. Vib. Shock 34(17), 77–82 (2015)

    Google Scholar 

  • Hetmaniuk, U., Lehoucq, R.: Basis selection in LOBPCG. J. Comput. Phys. 218, 324–332 (2006)

    Article  MathSciNet  Google Scholar 

  • Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)

    Article  MathSciNet  Google Scholar 

  • HYPRE: High performance preconditioners, http://www.llnl.gov/CASC/hypre/, Version: 2.11.2 (2017)

  • Knyazev, A.V., Argentati, M.E., Lashuk, I., Ovtchinnikov, E.E.: Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in hypre and PETSc. SIAM J. Sci. Comput. 29(5), 2224–2239 (2007)

    Article  MathSciNet  Google Scholar 

  • Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)

    Article  MathSciNet  Google Scholar 

  • Knyazev, A.V., Neymeyr, K.: Efficient soltuion of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method. Electron. Trans. Numer. Anal. 15, 38–55 (2003)

    MathSciNet  MATH  Google Scholar 

  • Saad, Y.: Numerical Methods For Large Eigenvalue Problems. Classics in Applied Mathematics. SIAM (2011)

  • Stathopoulos, A., Wu, K.: A block orthogonalization procedure with constant synchronization requirements. SIAM J. Sci. Comput. 23(6), 2162–2182 (2002)

    Article  MathSciNet  Google Scholar 

  • Wen, Z., Zhang, Y.: Accelerating convergence by augmented Rayleigh-Ritz projections for large-scale eigenvalue compution. SIAM J. Matrix Anal. Appl. 38(2), 273–296 (2017)

    Article  MathSciNet  Google Scholar 

  • Yokozawa, T., Takahashi, D., Boku, T., Sato, M.: Efficient parallel implementation of classical Gram-Schmidt orthogonalization using matrixmultiplication. In: Proceedings of Fourth International Workshop on Parallel matrix Algorithms and Applications (PMAA'06), pp 37–38 (2006)

  • Yu, C., Fan, X., Wang, K., Xiao, S.: Parallel computing of multipoint-base-excited Harmonic response with PANDA platform. Chinese Journal of Computational Physics 35(4), 443–450 (2018)

    Google Scholar 

  • Zhang, L.: A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection. Numer. Math. Theor. Meth. Appl. 2(1), 65–89 (2009)

    MathSciNet  MATH  Google Scholar 

  • Zhang, N., Li, Y., Xie, H., Xu, R., You, C.: A generalized conjugate gradient method for eigenvalue problems, chin aXiv:201908.00121V1, (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hehu Xie.

Additional information

This work was supported by Science Challenge Project (No. TZ2016002), National Natural Science Foundations of China (NSFC 11771434, 91730302), the National Center for Mathematics and Interdisciplinary Science, CAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xie, H., Xu, R. et al. A parallel generalized conjugate gradient method for large scale eigenvalue problems. CCF Trans. HPC 2, 111–122 (2020). https://doi.org/10.1007/s42514-020-00029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42514-020-00029-6

Keywords

Mathematics Subject Classification

Navigation