Abstract
Based on damping blocked inverse power method, a type of generalized parallel conjugate gradient method is proposed for large scale eigenvalue problems. Techniques for orthogonalization and computing Rayleigh-Ritz problems are introduced to improve the stability, efficiency and scalability. Furthermore, a computing package is built based on the proposed method here. Some numerical tests are provided to validate the stability, efficiency and scalability of the method in this paper. The corresponding computing package can be downloaded from the web site: https://github.com/pase2017/GCGE-1.0.
Similar content being viewed by others
Notes
References
Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, Society for industrial and applied mathematics, 3-rd Version, (1999)
Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000)
Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries. Modern Software Tools for Scientific Computing. Birkhäuser, Boston, MA (1997)
Duersch, J.A., Shao, M., Yang, C., Gu, M.: A robust and efficient implementation of LOBPCG. SIAM J. Sci. Comput. 40(5), C655–C676 (2018)
Fan, X., Chen, P., Wu, R., Xiao, S.: Parallel compiting study of large scale modal analysis based on the Jacobi–Davidson algorithm. J. Vib. Shock 33(1), 203–208 (2014)
Fan, X., Xiao, S., Chen, P.: Parallel computing study on finite element modal analysis over ten-million degrees of freedom. J. Vib. Shock 34(17), 77–82 (2015)
Hetmaniuk, U., Lehoucq, R.: Basis selection in LOBPCG. J. Comput. Phys. 218, 324–332 (2006)
Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)
HYPRE: High performance preconditioners, http://www.llnl.gov/CASC/hypre/, Version: 2.11.2 (2017)
Knyazev, A.V., Argentati, M.E., Lashuk, I., Ovtchinnikov, E.E.: Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in hypre and PETSc. SIAM J. Sci. Comput. 29(5), 2224–2239 (2007)
Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)
Knyazev, A.V., Neymeyr, K.: Efficient soltuion of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method. Electron. Trans. Numer. Anal. 15, 38–55 (2003)
Saad, Y.: Numerical Methods For Large Eigenvalue Problems. Classics in Applied Mathematics. SIAM (2011)
Stathopoulos, A., Wu, K.: A block orthogonalization procedure with constant synchronization requirements. SIAM J. Sci. Comput. 23(6), 2162–2182 (2002)
Wen, Z., Zhang, Y.: Accelerating convergence by augmented Rayleigh-Ritz projections for large-scale eigenvalue compution. SIAM J. Matrix Anal. Appl. 38(2), 273–296 (2017)
Yokozawa, T., Takahashi, D., Boku, T., Sato, M.: Efficient parallel implementation of classical Gram-Schmidt orthogonalization using matrixmultiplication. In: Proceedings of Fourth International Workshop on Parallel matrix Algorithms and Applications (PMAA'06), pp 37–38 (2006)
Yu, C., Fan, X., Wang, K., Xiao, S.: Parallel computing of multipoint-base-excited Harmonic response with PANDA platform. Chinese Journal of Computational Physics 35(4), 443–450 (2018)
Zhang, L.: A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection. Numer. Math. Theor. Meth. Appl. 2(1), 65–89 (2009)
Zhang, N., Li, Y., Xie, H., Xu, R., You, C.: A generalized conjugate gradient method for eigenvalue problems, chin aXiv:201908.00121V1, (2019)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by Science Challenge Project (No. TZ2016002), National Natural Science Foundations of China (NSFC 11771434, 91730302), the National Center for Mathematics and Interdisciplinary Science, CAS.
Rights and permissions
About this article
Cite this article
Li, Y., Xie, H., Xu, R. et al. A parallel generalized conjugate gradient method for large scale eigenvalue problems. CCF Trans. HPC 2, 111–122 (2020). https://doi.org/10.1007/s42514-020-00029-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42514-020-00029-6
Keywords
- Large scale eigenvalue problem
- Dumping blocked inverse power
- Parallel generalized conjugate gradient
- Efficiency
- Stability
- scalability