Skip to main content
Log in

Preliminary Study of the Effects of Different Drag Laws on Ice Crystal Impingement on Probes Mounted on a Fuselage

  • Original article
  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

In this work, the effects of different drag laws regarding the ice crystal impingement on the fuselage of a regional aircraft are investigated. Different probes are considered on the surface of interest and simulated like simple segments normal to the fuselage. Along each of these instrumentations, the collection efficiency has been calculated by using a RANS structured solver named UZEN and an Eulerian impingement code IMP3D, both developed internally at CIRA. The solvers are parallelized and well-assessed. The computational grid has been generated with ICEM CFD. Results show the strong influence of the shape considered for the ice crystal particles and how different laws can guide different water concentrations on the probe surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Surface area of the particle [m2]

C d :

Particle drag coefficient [–]

C p,p :

Particle specific heat [J/kg/K]

d p :

Particle diameter [µm]

E :

Eccentricity [–]

Fr :

Particle Froude number [–]

k c :

Thermal conductivity [W/m/K]

h c :

Convective coefficient [W/K/m2]

MVD:

Mean volume diameter [µm]

Nu :

Particle Nusselt number [–]

Re :

Particle Reynolds number [–]

T :

Air temperature [K]

T a :

Particle temperature [K]

V :

Particle velocity vector [m/s]

V a :

Air velocity vector [m/s]

X :

X-Axis coordinate of probe [m]

We :

Particle Weber number [–]

Y :

Y-Axis coordinate of probe [m]

y + :

Dimensionless wall distance [–]

Z :

Z-Axis-coordinate of probe [m]

V :

Ice crystals velocity [m/s

α:

Particle volume fraction [–]

βinst :

Installation coefficient, the ratio of the local particle concentration to the upstream particle concentration, is calculated along the direction normal to the fuselage [-]

ε:

Collection efficiency percentage difference [–]

µa :

Air dynamic viscosity [Ns/m2]

ρa :

Air density [kg/m3]

ρp :

Particle density [kg/m3]

Φ:

Sphericity, \(\frac{\pi {{d}_{p}}^{2}}{A}\) [–]

Φ :

Crosswise sphericity

a:

Air

c:

Conduction

D:

Drag

p:

Particle

References

  1. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, drops, and particles. Academic Press, New York (1978)

    Google Scholar 

  2. Loth, E.: Drag of non-spherical solid particles of regular and irregular shape. Powder Technol. 182, 342–353 (2008)

    Article  Google Scholar 

  3. Clift, R., Gauvin, W.H. : The motion of particles in turbulent gas streams. In: Proceedings CHEMECA 1970, Butterworth, Melbourne, 1, 14-28, (1970)

  4. Ganser, G.H.: A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol. 77, 143 (1993)

    Article  Google Scholar 

  5. Haider, A., Levenspiel, O.: Drag coefficient and terminal velocity of spherical and non-spherical particles. Powder Technol. 58, 63–70 (1989)

    Article  Google Scholar 

  6. Hölzer, A., Sommerfeld, M.: New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 184, 361–365 (2008)

    Article  Google Scholar 

  7. Comer, J.K., Kleinstreuer, C.: Computational analysis of convection heat transfer to non-spherical particles. Int. J. Heat Mass Transfer 38(17), 3171 (1995)

    Article  Google Scholar 

  8. Richter, A., Nikrityuk, P.A.: Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers. Int. J. Heat Mass Transfer 55(4), 12 (2012)

    Article  Google Scholar 

  9. Marongiu, C., Catalano, P., Amato, M., Iaccarino, G.: U-ZEN: a computational tool solving U-RANS equations for industrial unsteady applications. In: 34th AIAA Fluid Dynamics Conference, Portland (Or), June 28–July 1 2004, AIAA Paper 2004–2345

  10. Menter, F.R.: Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 269–289 (1994)

    Article  Google Scholar 

  11. Iuliano, E., Brandi, V., Mingione, G., de Nicola, C., Tognaccini, R.: Water impingement prediction on multi-element airfoils by means of Eulerian and Lagrangian approach with viscous and inviscid air flow. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA paper 2006–1270, Reno, Nevada, (2006)https://doi.org/10.2514/6.2006-1270

  12. Capizzano, F., Catalano, P., Marongiu, C., Vitagliano, P. L.: U-RANS Modelling of Turbulent Flows Controlled by Synthetic Jets. In: 35th AIAA Fluid Dynamcis Conference, (2005) https://doi.org/10.2514/6.2005-5015

  13. Catalano, P., Tognaccini, R.: Turbulence modelling for low Reynolds number flows. AIAA J. 48, 1673–1685 (2010). https://doi.org/10.2514/1.J050067

    Article  Google Scholar 

  14. Catalano, P., Mele, B., Tognaccini, R.: On the implementation of a turbulence model for low Reynolds number flows. Comput. Fluids. Fluids 109, 67–71 (2015). https://doi.org/10.1016/j.compfluid.2014.12.009

    Article  Google Scholar 

  15. Catalano, P.: Application of a Hybrid RANS-LES method to free shear layers flows. In: ASME International Mechanical Engineering Congress & Exposition, IMECE 2019, (2019) https://doi.org/10.1115/IMECE2019-10618

  16. Kok, J.: Resolving the dependence on free-stream values for the k-ω turbulence model. AIAA J. 38(7), 1292–1295 (2000). https://doi.org/10.2514/2.1101

    Article  Google Scholar 

  17. Eliasson, P., Catalano, P., Pape, M.-C., Ortmann, J., Pelizzari, E., Ponsin, J.: Improved CFD predictions for high lift flows in the European project EUROLIFT II. In: AIAA Paper 2007–4303, (2007) https://doi.org/10.2514/6.2007-4303

  18. Iaccarino, G., Marongiu, C., Catalano, P., Amato, M.: RANS modeling and simulation of synthetic jets. In: AIAA paper 2004–2223, (2004) https://doi.org/10.2514/6.2004-2223

  19. Mele, B., Tognaccini, R., Catalano, P.: Performance assessment of a transonic wing-body configuration with riblets installed. J. Aircr.Aircr. 53(1), 129–140 (2016). https://doi.org/10.2514/1.C033220

    Article  Google Scholar 

  20. Marino, A., Catalano, P., Marongiu, C., Peschke, P., Hollenstein, C., and Donelli, R.: Effect of high voltage pulsed DBD plasma on the aerodynamic performances in subsonic and transonic conditions. In: 43rd AIAA Fluid Dynamics Conference, (2013) https://doi.org/10.2514/6.2013-2752

  21. Iuliano, E., Mingione, G., De Domenico, F., de Nicola, C.: An Eulerian approach to three-dimensional droplet impingement simulation in icing environment. In: AIAA Giudance, Navigation, and Control Conference, AIAA paper 2010–7677, Toronto, Canada, (2010) https://doi.org/10.2514/6.2010-7677

  22. Menter, F., Smirnov, P.E., Liu, T., Avancha, R.: A one-equation local correlation-based transition model. Flow Turbul. Combust.Turbul. Combust. 95(4), 583–619 (2015)

    Article  Google Scholar 

  23. Bucknell, A., McGilvray, M., Gillespie, D., Yang, X. et al.: ICICLE: a model for glaciated & mixed phase icing for application to aircraft engines. In: SAE Technical Paper 2019-01-1969, (2019) https://doi.org/10.4271/2019-01-1969.

  24. Iuliano, E, Montreuil, E., Norde, E., Van der Weide, E.T.A., Hoeijmakers H.W.M.: Modelling of non-spherical particle evolution for ice crystals simulation with an Eulerian approach. In: SAE Technical Paper 2015-0148-7191, https://doi.org/10.4271/2015-01-2138

Download references

Acknowledgements

Authors would thank Andheo and Dassault companies for giving us the permission to use the data they collected in the European project Music-haic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Carozza.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carozza, A., Vitagliano, P.L. & Mingione, G. Preliminary Study of the Effects of Different Drag Laws on Ice Crystal Impingement on Probes Mounted on a Fuselage. Aerotec. Missili Spaz. 103, 89–100 (2024). https://doi.org/10.1007/s42496-023-00184-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42496-023-00184-3

Keywords

Navigation