Tabiei, A., Medikonda, S.: A non-linear strain-rate micro-mechanical composite material model for impact problems. In: 15th International LS-DYNA Users Conference, Detroit, 10–12 June 2018, pp 1–22 (2018)
Palma, L.D., Caprio, F.D., Chiariello, A., Ignarra, M., Russo, S., Riccio, A., Luca, A.D., Caputo, F.: Vertical drop test of composite fuselage section of a regional aircraft. AIAA J. 58(1), 474–487 (2020)
Article
Google Scholar
Caputo, F., Lamanna, G., Perfetto, D.: Experimental and numerical crashworthiness study of a full-scale composite fuselage section. AIAA J. (2020). https://doi.org/10.2514/1.J059216
Article
Google Scholar
Fasanella, E.L., Jackson, K.E.: Best practices for crash modeling and simulation. In: Technical Memorandum: NASA/TM-2002-211944, Ref. ARL-TR-2849 (2002)
McGregor, C.J.: Simulation of progressive damage development in braided composite tubes under axial compression. Master’s thesis, University of British Columbia, Vancouver (2005)
Lombarkia, R., Gakwaya, A., Nandlall, D., Dano, M.-L., Lévesque, J., Benkhelifa, A., Vachon-Joannette, P., Gagnon, P.: A meso-mechanical material model describing a crash behavior of 2D plain weave fabric composites. CEAS Aeronaut. J. (2021). https://doi.org/10.1007/s13272-020-00488-1. (Published online: 04 Jan 2021)
Article
Google Scholar
Guida, M., Marulo, S.A.F.: Advances in crash dynamics for aircraft safety. Prog. Aerosp. Sci. 98, 106–123 (2018)
Article
Google Scholar
Delsart, D., Portement, G., Waimer, M.: Crash testing of a CFRP commercial aircraft sub-cargo fuselage section. Struct. Integr. Proc. 2, 2198–2205 (2016)
Google Scholar
Saito, K., Nishi, M.: FE Modeling to simulate the axial crushing behavior of DFRP composites. In: 21st International Conference on Composite Materials, Xian, 20–25 August 2017
Chiu, L.N., Falzon, B.G., Boman, R., Chen, B., Yan, W.: Finite Element modeling of composite structures under crushing load. Compos. Struct. 131, 215–225 (2015)
Article
Google Scholar
Bednarcyk, B.A., Stier, B., Simon, J.-W., Reese, S., Pineda, E.J.: Meso- and micro-scale modeling of damage in plain weave composites. Compos. Struct. 121, 258–270 (2015)
Article
Google Scholar
MCgregor, C., Navid Zobeiry, R.V.: A constitutive model for progressive compressive failure of composites. J. Compos. Mater. 42(25), 2687–2716 (2008)
Article
Google Scholar
Janapala, N.R., Chang, F.-K., Goldberg, R.K., Roberts, G.D., Jackson, K.E.: Crashworthiness of composite structures with various fiber architectures. In: 11th International LS-DYNA® Users Conference, Detroit, USA (2010)
Cox, N.B., Flanagan, G.: Handbook of analytical methods for textile composites. NASA Contractor Report No: 4750 (1997)
Kashani, M.H., Milani, A.S.: Damage prediction in woven and non-woven fabric composites. In: Jeon, H.Y. (eds.) Non-Woven Fabrics, pp. 234–262. INTECH (2016)
Ghane, E., Mohammadi, B.: Entropy-damage mechanics for the failure investigation of plain weave fabric composites. Compos. Struct. 250, 1–13 (2020). https://doi.org/10.1016/j.compstruct.2020.112493
Article
Google Scholar
Joosten, M., Dutton, S., Kelly, D., Thomson, R.: Experimental and numerical investigation of the crushing response of an open section composite energy absorbing element. Compos. Struct. 93, 682–689 (2011)
Article
Google Scholar
Esnaola, A., Elguezabal, B., Aurrekkoetxea, J., Gallego, I., Ulacia, I.: Optimization of the semi-hexagonal geometry of a composite crush structure by finite element analysis. Compos. Part B 93, 56–66 (2016)
Article
Google Scholar
Waimer, M., Siemann, M., Feser, T.: Simulation of CFRP components subjected to dynamic crash loads. Int. J. Impact Eng. 101, 115–131 (2017)
Article
Google Scholar
Rosen, V.W.: Mechanics of composite strengthening. In: Fiber Composite Materials, Seminar of the American Society for Metals, pp. 37–75. Metals Park, Ohio (1965)
Argon, A.S.: Fracture of composites. In: Treatise on Materials Science and Technology, vol. 1, pp. 79–114. Academic Press, New York (1972)
Pinho, S., Dávila, C., Camanho, P., Iannucci, L., Robinson, P.: Failure models and criteria for frp under in-plane or three-dimensional stress states including shear non-linearity. In: Technical Memorandum: NASA/TM-2005-213530, Hanover (2005)
Rivallant, S., Israr, H., Barrau, J.: Modélisation par éléments finis de l’écrasement de stratifiés d’unidirectionnels carbone/époxy à faible vitesse. In: JNC 18 - 18èmes Journées Nationales sur les Composites, Nantes, France, 12–14 June 2013
Akil, O., Yildirim, U., Guden, M., Hall, I.W.: Effect of the strain-rate on the compression behavior of woven fabric S2-glass fiber reinforced vinyl ester composite. Polym. Test. 22(8), 883–887 (2003)
Article
Google Scholar
Gilat, A., Goldberg, R.K., Roberts, G.D.: Experimental study of strain-rate dependant behavior of carbon epoxy composite. Compos. Sci. Technol. 62, 1469–1476 (2002)
Article
Google Scholar
Tay, T.E., Ang, H.G., Shim, V.W.: An empirical strain-rate dependant constitutive relationship for glass fiber reinforced epoxy and pure epoxy. Compos. Strcut. 33(4), 201–210 (1995)
Article
Google Scholar
Li, Z., Lambros, J.: Strain-rate effects on the thermomechanical behavior of polymers. Int. J. Solids Struct. 38, 3549–3562 (2001)
Article
Google Scholar
Krasnobrizha, A., Rozycki, P., Gornet, L., Cosson, P.: Hysterisis behavior modeling of woven composite using a collaborative elastoplastic damage model with fractional derivatives. Compos. Struct. 158, 101–111 (2016)
Article
Google Scholar
Glodberg, R.K., Roberts, G.D., Gilat, A.: Implementation of an associative flow rule including hydrostatic stress effects into the high strain-rate deformation analysis of polymer matrix composites. J. Aerosp. Eng. 18(1), 18–27 (2005)
Article
Google Scholar
Welsh, L., Harding, J.: Effect of strain-rate on the tensile failure of woven reinforced polyester resin composites (1985). https://hal.archives-ouvertes.fr/jpa-00224782. Accessed 19 Oct 2021
Jendli, Z., Fitoussi, J., Bocquet, M., Walrick, J.C.: Strain-rate effects on the mechanical behavior of carbon-thermoplastic matrix woven composites. In: Comptes Rendus des JNC 18 - ÉCOLE CENTRALE NANTES, 12-14 June 2013, Nantes (2013)
Armattoe, K.M., Roycki, P., Mbacke, M.: Numerical and experimental characterization of the hygrothermal and strain-rate dependant behavior of woven glass fiber reinforced polyamide. In: ECCM17—17th European Conference on Composite Materials, Munich, (2016)
Feld, N., Coussa, F., Delattre, B.: A novel approach for the strain-rate dependent modelling of woven composites. Compos. Struct. 192, 568–576 (2018)
Article
Google Scholar
Schaefer, J.D., Daniel, I.M.: Strain-rate-dependent yield criteria for progressive failure analysis of composite laminates based on the northwestern failure theory. Exp. Mech. 58, 487–497 (2018). https://doi.org/10.1007/s11340-017-0366-z
Article
Google Scholar
Yen, C.F.: Ballistic impact modeling of composite materials. In: Proceedings of the 7th International Ls-Dyna User Conference, DYNAlook, vol. 6, pp. 15–26. Dearborn (2002)
Zheng, X., Binenda, W.K.: Rate dependent Shell element composite material model implementation. J. Aerosp. Eng. 21(3), 140–151 (2008)
Article
Google Scholar
Donadon, M., Frascino, S., Mariano, A., Arbelo, A., Faria, R.A.: A Three-dimensional ply failure model for composite structures. Int. J. Aerosp. Eng. 2009, 486063 (2009). https://doi.org/10.1155/2009/486063
Article
Google Scholar
Ming, L., Pantalé, O.: An efficient and robust VUMAT implementation of elastoplastic constitutive laws in Abaqus/Explicit finite element code. Mech. Ind. 19(3), 308 (2018). https://doi.org/10.1051/meca/2018021
Article
Google Scholar
Beckelynck, B.: Étude de la délamination sur des matériaux composites tissés taffetas: Essais de caractérisation et simulations numériques. Université Laval, Québec (2016)
Google Scholar
Salvi, A.G., Waas, A.M.: Rate-dependant compressive behavior of unidirectional carbon fiber composites. Polym. Compos. 25(4), 397–406 (2004)
Article
Google Scholar
Zhou, J., Guan, Z., Cantwell, W.: Modelling compressive crush of composite tube reinforced foam sandwiches. In: International Conference on Composite Materials ICCM, Cambridge, England, 28–30 July 2014 (2014)
Lombarkia, R., Gakwaya, A., Nandlall, D., Dano, M.-L., Lévesque, J., Vachon-Joannette, P.: Experimental investigation and finite-element modeling of the crushing response of hat shape open section composites. Int. J. Crashworth. (2020). https://doi.org/10.1080/13588265.2020.1838773
Article
Google Scholar
SIMULIA: Abaqus Documentations. Dassault Systems, 6.14 (2014)
Google Scholar
SIMULIA: Abaqus Documentations. Dassault Systems (2020)
Google Scholar
Lombarkia, R., Gakwaya, A., Nandlall, D., Dano, M.L., Lévesque, J., Vachon-Joannette, P., Gagnon, P., Benkhelifa, A.: Comparative study of energy absorption capability of flat plate coupons made by CFRP plain weave fabric composites. World J Mech 11, 121–145 (2021). https://doi.org/10.4236/wjm.2021.117010
Article
Google Scholar
Israr, H., Rivallant, S., Barrau, J.: Experimental investigation on mean crushing stress characterization of carbon–epoxy plies under compressive crushing mode. Compos. Struct. 96, 357–364 (2013)
Article
Google Scholar