Skip to main content

Strain-Rates Dependent Constitutive Law for Crashworthiness and Parameter Sensitivity Analysis of Woven Composites


The prediction of dynamic crushing behavior of aerospace-grade composites is a hard challenge for researchers. At coupons scale, such behavior implies the understanding of the initiation and propagation of the elementary damage mechanisms. Many results of the research confirm that the modulus and strength of composites increases with strain-rate. This paper presents the improvement of the constitutive model UL-Crush by adding dynamic stiffness modulus and strengths. The improved tool uses new approach by updating the stiffness and the strength values depending on strain-rates. In addition, parameter sensitivity investigations were conducted to assess the specific energy absorption capabilities of different material configurations. A new on-axis compression fixture was designed and manufactured to carry out tests of plain weave fabric composites, under quasi-static (QS) and low-velocity compression using MTS Insight 100 loading frame and drop tower CEAST Instron9340 facility. Two types of cross-section geometries were used: flat-plate and Hat-Shape coupons. Four types of triggering mechanism were adopted, including saw teeth, chamfer45°, steeple and corrugated, to ensure a continuous and stable crushing mode of failure. Detailed parameter sensitivity investigations were performed, including dimension scale, stacking sequences, trigger types and strain-rates. It was shown that the crush response is strain-rate dependent, and dynamic load decreases absorbed energy, which is indicative of microstructure disintegrating. Globally, big dimension scale, corrugated trigger, [0/45/45/0]s layup and decreasing strain-rate are the parameters to enhance the energy absorption capability of composite coupons. It has been observed that the improved numerical tool UL-Crush was able to significantly capture most crush mechanisms, reasonably correlate with experiments, and give an accurate dynamic response for crashworthy structures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33


  1. Tabiei, A., Medikonda, S.: A non-linear strain-rate micro-mechanical composite material model for impact problems. In: 15th International LS-DYNA Users Conference, Detroit, 10–12 June 2018, pp 1–22 (2018)

  2. Palma, L.D., Caprio, F.D., Chiariello, A., Ignarra, M., Russo, S., Riccio, A., Luca, A.D., Caputo, F.: Vertical drop test of composite fuselage section of a regional aircraft. AIAA J. 58(1), 474–487 (2020)

    Article  Google Scholar 

  3. Caputo, F., Lamanna, G., Perfetto, D.: Experimental and numerical crashworthiness study of a full-scale composite fuselage section. AIAA J. (2020).

    Article  Google Scholar 

  4. Fasanella, E.L., Jackson, K.E.: Best practices for crash modeling and simulation. In: Technical Memorandum: NASA/TM-2002-211944, Ref. ARL-TR-2849 (2002)

  5. McGregor, C.J.: Simulation of progressive damage development in braided composite tubes under axial compression. Master’s thesis, University of British Columbia, Vancouver (2005)

  6. Lombarkia, R., Gakwaya, A., Nandlall, D., Dano, M.-L., Lévesque, J., Benkhelifa, A., Vachon-Joannette, P., Gagnon, P.: A meso-mechanical material model describing a crash behavior of 2D plain weave fabric composites. CEAS Aeronaut. J. (2021). (Published online: 04 Jan 2021)

    Article  Google Scholar 

  7. Guida, M., Marulo, S.A.F.: Advances in crash dynamics for aircraft safety. Prog. Aerosp. Sci. 98, 106–123 (2018)

    Article  Google Scholar 

  8. Delsart, D., Portement, G., Waimer, M.: Crash testing of a CFRP commercial aircraft sub-cargo fuselage section. Struct. Integr. Proc. 2, 2198–2205 (2016)

    Google Scholar 

  9. Saito, K., Nishi, M.: FE Modeling to simulate the axial crushing behavior of DFRP composites. In: 21st International Conference on Composite Materials, Xian, 20–25 August 2017

  10. Chiu, L.N., Falzon, B.G., Boman, R., Chen, B., Yan, W.: Finite Element modeling of composite structures under crushing load. Compos. Struct. 131, 215–225 (2015)

    Article  Google Scholar 

  11. Bednarcyk, B.A., Stier, B., Simon, J.-W., Reese, S., Pineda, E.J.: Meso- and micro-scale modeling of damage in plain weave composites. Compos. Struct. 121, 258–270 (2015)

    Article  Google Scholar 

  12. MCgregor, C., Navid Zobeiry, R.V.: A constitutive model for progressive compressive failure of composites. J. Compos. Mater. 42(25), 2687–2716 (2008)

    Article  Google Scholar 

  13. Janapala, N.R., Chang, F.-K., Goldberg, R.K., Roberts, G.D., Jackson, K.E.: Crashworthiness of composite structures with various fiber architectures. In: 11th International LS-DYNA® Users Conference, Detroit, USA (2010)

  14. Cox, N.B., Flanagan, G.: Handbook of analytical methods for textile composites. NASA Contractor Report No: 4750 (1997)

  15. Kashani, M.H., Milani, A.S.: Damage prediction in woven and non-woven fabric composites. In: Jeon, H.Y. (eds.) Non-Woven Fabrics, pp. 234–262. INTECH (2016)

  16. Ghane, E., Mohammadi, B.: Entropy-damage mechanics for the failure investigation of plain weave fabric composites. Compos. Struct. 250, 1–13 (2020).

    Article  Google Scholar 

  17. Joosten, M., Dutton, S., Kelly, D., Thomson, R.: Experimental and numerical investigation of the crushing response of an open section composite energy absorbing element. Compos. Struct. 93, 682–689 (2011)

    Article  Google Scholar 

  18. Esnaola, A., Elguezabal, B., Aurrekkoetxea, J., Gallego, I., Ulacia, I.: Optimization of the semi-hexagonal geometry of a composite crush structure by finite element analysis. Compos. Part B 93, 56–66 (2016)

    Article  Google Scholar 

  19. Waimer, M., Siemann, M., Feser, T.: Simulation of CFRP components subjected to dynamic crash loads. Int. J. Impact Eng. 101, 115–131 (2017)

    Article  Google Scholar 

  20. Rosen, V.W.: Mechanics of composite strengthening. In: Fiber Composite Materials, Seminar of the American Society for Metals, pp. 37–75. Metals Park, Ohio (1965)

  21. Argon, A.S.: Fracture of composites. In: Treatise on Materials Science and Technology, vol. 1, pp. 79–114. Academic Press, New York (1972)

  22. Pinho, S., Dávila, C., Camanho, P., Iannucci, L., Robinson, P.: Failure models and criteria for frp under in-plane or three-dimensional stress states including shear non-linearity. In: Technical Memorandum: NASA/TM-2005-213530, Hanover (2005)

  23. Rivallant, S., Israr, H., Barrau, J.: Modélisation par éléments finis de l’écrasement de stratifiés d’unidirectionnels carbone/époxy à faible vitesse. In: JNC 18 - 18èmes Journées Nationales sur les Composites, Nantes, France, 12–14 June 2013

  24. Akil, O., Yildirim, U., Guden, M., Hall, I.W.: Effect of the strain-rate on the compression behavior of woven fabric S2-glass fiber reinforced vinyl ester composite. Polym. Test. 22(8), 883–887 (2003)

    Article  Google Scholar 

  25. Gilat, A., Goldberg, R.K., Roberts, G.D.: Experimental study of strain-rate dependant behavior of carbon epoxy composite. Compos. Sci. Technol. 62, 1469–1476 (2002)

    Article  Google Scholar 

  26. Tay, T.E., Ang, H.G., Shim, V.W.: An empirical strain-rate dependant constitutive relationship for glass fiber reinforced epoxy and pure epoxy. Compos. Strcut. 33(4), 201–210 (1995)

    Article  Google Scholar 

  27. Li, Z., Lambros, J.: Strain-rate effects on the thermomechanical behavior of polymers. Int. J. Solids Struct. 38, 3549–3562 (2001)

    Article  Google Scholar 

  28. Krasnobrizha, A., Rozycki, P., Gornet, L., Cosson, P.: Hysterisis behavior modeling of woven composite using a collaborative elastoplastic damage model with fractional derivatives. Compos. Struct. 158, 101–111 (2016)

    Article  Google Scholar 

  29. Glodberg, R.K., Roberts, G.D., Gilat, A.: Implementation of an associative flow rule including hydrostatic stress effects into the high strain-rate deformation analysis of polymer matrix composites. J. Aerosp. Eng. 18(1), 18–27 (2005)

    Article  Google Scholar 

  30. Welsh, L., Harding, J.: Effect of strain-rate on the tensile failure of woven reinforced polyester resin composites (1985). Accessed 19 Oct 2021

  31. Jendli, Z., Fitoussi, J., Bocquet, M., Walrick, J.C.: Strain-rate effects on the mechanical behavior of carbon-thermoplastic matrix woven composites. In: Comptes Rendus des JNC 18 - ÉCOLE CENTRALE NANTES, 12-14 June 2013, Nantes (2013)

  32. Armattoe, K.M., Roycki, P., Mbacke, M.: Numerical and experimental characterization of the hygrothermal and strain-rate dependant behavior of woven glass fiber reinforced polyamide. In: ECCM17—17th European Conference on Composite Materials, Munich, (2016)

  33. Feld, N., Coussa, F., Delattre, B.: A novel approach for the strain-rate dependent modelling of woven composites. Compos. Struct. 192, 568–576 (2018)

    Article  Google Scholar 

  34. Schaefer, J.D., Daniel, I.M.: Strain-rate-dependent yield criteria for progressive failure analysis of composite laminates based on the northwestern failure theory. Exp. Mech. 58, 487–497 (2018).

    Article  Google Scholar 

  35. Yen, C.F.: Ballistic impact modeling of composite materials. In: Proceedings of the 7th International Ls-Dyna User Conference, DYNAlook, vol. 6, pp. 15–26. Dearborn (2002)

  36. Zheng, X., Binenda, W.K.: Rate dependent Shell element composite material model implementation. J. Aerosp. Eng. 21(3), 140–151 (2008)

    Article  Google Scholar 

  37. Donadon, M., Frascino, S., Mariano, A., Arbelo, A., Faria, R.A.: A Three-dimensional ply failure model for composite structures. Int. J. Aerosp. Eng. 2009, 486063 (2009).

    Article  Google Scholar 

  38. Ming, L., Pantalé, O.: An efficient and robust VUMAT implementation of elastoplastic constitutive laws in Abaqus/Explicit finite element code. Mech. Ind. 19(3), 308 (2018).

    Article  Google Scholar 

  39. Beckelynck, B.: Étude de la délamination sur des matériaux composites tissés taffetas: Essais de caractérisation et simulations numériques. Université Laval, Québec (2016)

    Google Scholar 

  40. Salvi, A.G., Waas, A.M.: Rate-dependant compressive behavior of unidirectional carbon fiber composites. Polym. Compos. 25(4), 397–406 (2004)

    Article  Google Scholar 

  41. Zhou, J., Guan, Z., Cantwell, W.: Modelling compressive crush of composite tube reinforced foam sandwiches. In: International Conference on Composite Materials ICCM, Cambridge, England, 28–30 July 2014 (2014)

  42. Lombarkia, R., Gakwaya, A., Nandlall, D., Dano, M.-L., Lévesque, J., Vachon-Joannette, P.: Experimental investigation and finite-element modeling of the crushing response of hat shape open section composites. Int. J. Crashworth. (2020).

    Article  Google Scholar 

  43. SIMULIA: Abaqus Documentations. Dassault Systems, 6.14 (2014)

    Google Scholar 

  44. SIMULIA: Abaqus Documentations. Dassault Systems (2020)

    Google Scholar 

  45. Lombarkia, R., Gakwaya, A., Nandlall, D., Dano, M.L., Lévesque, J., Vachon-Joannette, P., Gagnon, P., Benkhelifa, A.: Comparative study of energy absorption capability of flat plate coupons made by CFRP plain weave fabric composites. World J Mech 11, 121–145 (2021).

    Article  Google Scholar 

  46. Israr, H., Rivallant, S., Barrau, J.: Experimental investigation on mean crushing stress characterization of carbon–epoxy plies under compressive crushing mode. Compos. Struct. 96, 357–364 (2013)

    Article  Google Scholar 

Download references


The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. The authors would like to thank the Natural Science and engineering Research Counsel of Canada (NSERC), Consortium for research and innovation in aerospace in Quebec (CRIAQ) through CRIAQ Project COMP-410, Bombardier Aerospace and Bell Helicopter Textron Company (BHTC) for funding, technical support and materials.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. Lombarkia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lombarkia, R., Gakwaya, A., Nandlall, D. et al. Strain-Rates Dependent Constitutive Law for Crashworthiness and Parameter Sensitivity Analysis of Woven Composites. Aerotec. Missili Spaz. 101, 33–51 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Continuum damage mechanics (CDM)
  • Strain-rate dependency
  • Finite-element analysis (FEA)
  • Crashworthiness
  • Specific energy absorption (SEA)