Skip to main content
Log in

Numerical Methods for Efficient Fluid–Structure Interaction Simulations of Paragliders

  • Original article
  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

After specifying the general context and needs of the paragliding industry, a new model to compute paraglider cloth dynamics is presented. Applications in research and development are then shown. Results are very promising: using simulations is drastically changing the way paragliders are being developed. Then the firsts steps towards the use of immersed boundaries with Lattice Boltzmann method for the highly coupled, transient high fidelity fluid–structure interaction simulation of paragliders are presented. Despite strong bias due to under-resolved boundary layers, numerical results of the cloth deformations are in an acceptable agreement with wind tunnel measurements conducted in a previous study on a small and simple parachute geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Charles, R.D.: Simulation of the baseline characteristics of a ram-air parachute. In: Aerodynamic Decelerator Systems: Simulation, AIAA 2017-3545 (2017). https://doi.org/10.2514/6.2017-3545

  2. Perin, B., Donnard, A., Bordenave, P., Larrieu, C., Simond, C., Belloc, H.: Fluid–structure interaction simulation of ram-air parachutes—an application for a kite. In: Fluid-Structure Interaction, AIAA 2015-2185 (2015). https://doi.org/10.2514/6.2015-2185

  3. Fogell, N., Iannucci, L., Bergeron, K.: Fluid-structure interaction simulation study of a semi-rigid ram-air parachute model. In: Aerodynamic Decelerator Systems: Simulation, AIAA 2017-3547 (2017). https://doi.org/10.2514/6.2017-3547

  4. Altmann, H.: Numerical simulation of parafoil aerodynamics and dynamic behaviour. In: Ram Air Parachutes I, ADS-14 (2012). https://doi.org/10.2514/6.2009-2947

  5. Altmann, H.: Fluid–structure interaction analysis of ram-air parafoil wings. In: Fluid-Structure Interaction, AIAA 2015-2184 (2015). https://doi.org/10.2514/6.2015-2184

  6. Eslambolchi, A., Johari, H.: Simulation of flowfield around a ram-air personnel parachute canopy. J. Aircr. 50(5), 1628–1636 (2013)

    Article  Google Scholar 

  7. Seidel, J., Bergeron, K.: Wind tunnel investigations of billowing effects on rigid ram air parachute models. In: Aerodynamic Decelerator Systems: Plenary and Panel (2017). https://doi.org/10.2514/6.2017-4057

  8. Belloc, H., Chapin, V., Manara, F., Sgarbossa, F., Forsting, A.: Influence of the air inlet configuration on the performances of a paraglider open airfoil. Int. J. Aerodyn. 5(n.2), 83–104 (2016)

    Article  Google Scholar 

  9. Provot, X.: Deformation Constraints in Mass-spring Model to Describe Rigid Cloth Behavior. INRIA, Rocquencourt (1995)

    Google Scholar 

  10. Liu, T.: Fast Simulation of Mass-spring Systems. University of Pennsylvania, Philadelphia (2013)

    Book  Google Scholar 

  11. Absi, E., Prager, W.: A comparison of equivalence and finite element methods. Comput. Methods Appl. Mech. Eng. 6, 59–64 (1975)

    Article  MathSciNet  Google Scholar 

  12. Shi, Q., Reasor, D., Gao, Z., Li, X., Charles, R.: On the verification and validation of a spring fabric for modeling parachute inflation. J. Fluids Struct. 58(2015), 20–39 (2015)

    Article  Google Scholar 

  13. Baraff, D., Witkin, A.: Large step in cloth simulation. In: Association for Computing Machinery; Special Interest Group on Computer Graphics (SIGGRAPH), vol. 24, Orlando (1998)

  14. Martin, S., Thomaszewski, B., Grinspun, E., Gross, M.: Example-Based Elastic Materials. ETH Zurich, Disney Research Zurich, Zurich (2011)

    Google Scholar 

  15. Kotsalos, C., Latt, J., Chopard, B.: Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow. J. Comput. Phys. (2019). arXiv:1903.06479

  16. Baudet, V., Beuve, M., Jaillet, F., Shariat, B., Zara, F.: Integrating tensile parameters in hexahedral mass-spring system for simulation (2009)

  17. Cotin, S., Delingette, H., Ayache, N.: Efficient linear elastic models of soft tissues for real-time surgery simulation. RR-3510, INRIA (1998). https://hal.inria.fr/inria-00073174

  18. Favier, J., Revell, A., Pinelli, A.: A Lattice Boltzmann—immersed boundary method to simulate the fluid interaction with moving and slender flexible objects. J. Comput. Phys. 261, 145–161 (2009)

    Article  MathSciNet  Google Scholar 

  19. Chen, S., Doolen, G.D.: Lattice Boltzmann methods for fluid flows. Annu. Rev. Fluid Mech. 30, 329–64 (1998)

    Article  MathSciNet  Google Scholar 

  20. Latt, J., Chopard, B.: Straight Velocity Boundaries in the Lattice Boltzmann Method. University of Geneva, Geneva (2008)

    Book  Google Scholar 

  21. Ota, K., Suzuki, K., Inamuro, T.: Lift generation by a two-dimensional symmetric flapping wing: immersed boundary-Lattice Boltzmann simulations. Fluid Dyn. Res. 44(4), (2012)

Download references

Acknowledgements

The author would like to thank Bruce Goldsmith Design for funding and supporting this project. The gratitude is extended to Jonas Latt for providing extensive help with Palabos, Christine Espinosa for her very useful comments throughout the development of the structural model, and as well to Christos Kotsalos for the interesting discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Lolies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lolies, T., Gourdain, N., Charlotte, M. et al. Numerical Methods for Efficient Fluid–Structure Interaction Simulations of Paragliders. Aerotec. Missili Spaz. 98, 221–229 (2019). https://doi.org/10.1007/s42496-019-00017-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42496-019-00017-2

Keywords

Navigation