Skip to main content
Log in

Recent Computational Approaches for Accelerating Dendrite Growth Prediction: A Short Review

  • Review
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

Phase-field modeling plays a pivotal role in the study of microstructure evolution, offering a crucial tool for understanding and predicting changes in material systems based on thermodynamics. This modeling approach excels in predicting the intricate side-branching patterns characteristic of dendritic growth, without explicit tracking of solid–liquid interfaces. However, the phase-field method often incurs significant computational costs, as it typically involves solving a system of coupled partial differential equations for a set of continuous field variables. Moreover, spatial discretization must be fine enough to resolve microstructure features like grain boundaries or side-branches. Additionally, obtaining an understanding of the effects of material properties often requires a substantial number of simulation results. To address these challenges, recent advances have combined high-throughput phase-field simulations with machine learning techniques, enabling the discovery of analytical expressions for specific material properties based on varying parameters. This approach offers valuable guidance for experimental design, significantly shortening development timelines and reducing costs for new materials. Although high-throughput phase-field simulations combined with machine learning have reduced the number of required databases, they still necessitate enough simulations for database construction. To further expedite this process, acceleration approaches like graphics processing unit (GPU)-based phase-field simulation and the utilization of physics-informed neural networks (PINNs) for phase-field modeling are being explored. With ongoing advancements in computational speed, the integration of machine learning into material development processes is increasingly regarded as an efficient method for further accelerating the pace of material innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.Q. Chen, Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32(1), 113–140 (2002)

    Article  Google Scholar 

  2. Q. Wang, G. Zhang, Y. Li, Z. Hong, D. Wang, S. Shi, Application of phase-field method in rechargeable batteries. npj Comput. Mater. 6(1), 176 (2020)

    Article  Google Scholar 

  3. I. Steinbach, Phase-field models in materials science. Modell. Simul. Mater. Sci. Eng. 17(7), 073001 (2009)

    Article  Google Scholar 

  4. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32(1), 163–194 (2002)

    Article  Google Scholar 

  5. T.Q. Ansari, H. Huang, S.Q. Shi, Phase field modeling for the morphological and microstructural evolution of metallic materials under environmental attack. npj Comput. Mater. 7(1), 143 (2021)

    Article  Google Scholar 

  6. Provatas, N. and K. Elder, Phase-field methods in materials science and engineering. 2011: John Wiley & Sons.

  7. S. Kovacevic, W. Ali, E. Martínez-Pañeda, Javier LLorca, Phase-field modeling of pitting and mechanically-assisted corrosion of Mg alloys for biomedical applications. Acta Biomater. 164, 641–658 (2023)

    Article  Google Scholar 

  8. L. Gránásy, L. Rátkai, G.I. Tóth, P.U. Gilbert, I. Zlotnikov, T. Pusztai, Phase-field modeling of biomineralization in mollusks and corals: Microstructure vs formation mechanism. JACS Au 1(7), 1014–1033 (2021)

    Article  Google Scholar 

  9. M. Plapp, Phase-field models, in Handbook of Crystal Growth. (Elsevier, 2015), pp.631–668

    Chapter  Google Scholar 

  10. L. Gránásy, L. Rátkai, A. Szállás, B. Korbuly, G.I. Tóth, L. Környei, T. Pusztai, Phase-field modeling of polycrystalline solidification: from needle crystals to spherulites—a review. Metall. Mater. Trans. A 45, 1694–1719 (2014)

    Article  Google Scholar 

  11. F. Yu, Y. Wei, Y. Ji, L.Q. Chen, Phase field modeling of solidification microstructure evolution during welding. J. Mater. Process. Technol. 255, 285–293 (2018)

    Article  Google Scholar 

  12. R. Spatschek, C. Müller Gugenberger, E. Brener, B. Nestler, Phase field modeling of fracture and stress-induced phase transitions. Phys. Rev. E 75(6), 066111 (2007)

    Article  MathSciNet  Google Scholar 

  13. M. Mamivand, M.A. Zaeem, H. El Kadiri, A review on phase field modeling of martensitic phase transformation. Comput. Mater. Sci. 77, 304–311 (2013)

    Article  Google Scholar 

  14. H.K. Kim, S.G. Kim, W. Dong, I. Steinbach, B.J. Lee, Phase-field modeling for 3D grain growth based on a grain boundary energy database. Modell. Simul. Mater. Sci. Eng. 22(3), 034004 (2014)

    Article  Google Scholar 

  15. P. Staublin, A. Mukherjee, J.A. Warren, P.W. Voorhees, Phase-field model for anisotropic grain growth. Acta Mater. 237, 118169 (2022)

    Article  Google Scholar 

  16. J. Kundin, L. Mushongera, T. Goehler, H. Emmerich, Phase-field modeling of the γ′-coarsening behavior in Ni-based superalloys. Acta Mater. 60(9), 3758–3772 (2012)

    Article  Google Scholar 

  17. M. Yang, L. Wang, W. Yan, Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening. NPJ Comput. Mater. 7(1), 56 (2021)

    Article  Google Scholar 

  18. R. Spatschek, E. Brener, A. Karma, Phase field modeling of crack propagation. Phil. Mag. 91(1), 75–95 (2011)

    Article  Google Scholar 

  19. A. Karma, D.A. Kessler, H. Levine, Phase-field model of mode III dynamic fracture. Phys. Rev. Lett. 87(4), 045501 (2001)

    Article  Google Scholar 

  20. A. Mukherjee, K. Ankit, R. Mukherjee, B. Nestler, Phase-field modeling of grain-boundary grooving under electromigration. J. Electron. Mater. 45, 6233–6246 (2016)

    Article  Google Scholar 

  21. D.N. Bhate, A. Kumar, A.F. Bower, Diffuse interface model for electromigration and stress voiding. J. Appl. Phys. 87(4), 1712–1721 (2000)

    Article  Google Scholar 

  22. T. Takaki, T. Shimokawabe, M. Ohno, A. Yamanaka, T. Aoki, Unexpected selection of growing dendrites by very-large-scale phase-field simulation. J. Cryst. Growth 382, 21–25 (2013). https://doi.org/10.1016/j.jcrysgro.2013.07.028

    Article  Google Scholar 

  23. H.G. Lee, S.Y. Kim, J.S. Lee, Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles. npj Comput. Mater. 8(1), 103 (2022)

    Article  Google Scholar 

  24. C. Xu, C. Lei, Y. Wang, C. Yu, Dendritic mesoporous nanoparticles: structure, synthesis and properties. Angew. Chem. Int. Ed. 61(12), e202112752 (2022)

    Article  Google Scholar 

  25. N. Sui, K. Wang, X. Shan, Q. Bai, L. Wang, H. Xiao, M. Liu, V.L. Colvin, W.Y. William, Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency. Dalton Trans. 46(44), 15541–15548 (2017)

    Article  Google Scholar 

  26. Y. Shin, C. Lee, M.S. Yang, S. Jeong, D. Kim, T. Kang, Two-dimensional hyper-branched gold nanoparticles synthesized on a two-dimensional oil/water interface. Sci. Rep. 4(1), 6119 (2014). https://doi.org/10.1038/srep06119

    Article  Google Scholar 

  27. Z. Chen, Y. Hu, X. He, T. Xiao, L. Hao, Y. Ruan, Phase-field crystal method for multiscale microstructures with cubic term. Mater. Today Commun. 29, 102935 (2021)

    Article  Google Scholar 

  28. K. Qian, A. Pawar, A. Liao, C. Anitescu, V. Webster Wood, A.W. Feinberg, T. Rabczuk, Y.J. Zhang, Modeling neuron growth using isogeometric collocation based phase field method. Sci. Rep. 12(1), 8120 (2022). https://doi.org/10.1038/s41598-022-12073-z

    Article  Google Scholar 

  29. M.A. Zaeem, H. Yin, S.D. Felicelli, Modeling dendritic solidification of Al–3% Cu using cellular automaton and phase-field methods. Appl. Math. Model. 37(5), 3495–3503 (2013). https://doi.org/10.1016/j.apm.2012.08.005

    Article  MathSciNet  Google Scholar 

  30. H. Lee, T. Kwak, W. Lee, J. Song, D. Kim, Effect of surface topography on dendritic growth in lithium metal batteries. J. Power. Sources 552, 232264 (2022). https://doi.org/10.1016/j.jpowsour.2022.232264

    Article  Google Scholar 

  31. L. Chen, H.W. Zhang, L.Y. Liang, Z. Liu, Y. Qi, P. Lu, J. Chen, L.Q. Chen, Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J. Power. Sources 300, 376–385 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.055

    Article  Google Scholar 

  32. X. Shen, R. Zhang, P. Shi, X. Chen, Q. Zhang, How does external pressure shape Li dendrites in Li metal batteries? Adv. Energy Mater. 11(10), 2003416 (2021). https://doi.org/10.1002/aenm.202003416

    Article  Google Scholar 

  33. T. Xue, Z. Gan, S. Liao, J. Cao, Physics-embedded graph network for accelerating phase-field simulation of microstructure evolution in additive manufacturing. npj Comput. Mater. 8(1), 201 (2022)

    Article  Google Scholar 

  34. Y. Zhu, T. Xu, Q. Wei, J. Mai, H. Yang, H. Zhang, T. Shimada, T. Kitamura, T.Y. Zhang, Linear-superelastic Ti-Nb nanocomposite alloys with ultralow modulus via high-throughput phase-field design and machine learning. npj Comput. Mater. 7(1), 205 (2021)

    Article  Google Scholar 

  35. Z.H. Shen, J.J. Wang, J.Y. Jiang, S.X. Huang, Y.H. Lin, C.W. Nan, L.Q. Chen, Y. Shen, Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat. Commun. 10(1), 1843 (2019). https://doi.org/10.1038/s41467-019-09874-8

    Article  Google Scholar 

  36. W. Li, T. Yang, C. Liu, Y. Huang, C. Chen, H. Pan, G. Xie, H. Tai, Y. Jiang, Y. Wu, Optimizing piezoelectric nanocomposites by high-throughput phase-field simulation and machine learning. Adv. Sci. 9(13), 2105550 (2022)

    Article  Google Scholar 

  37. V.K. Thakur, R.K. Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116(7), 4260–4317 (2016)

    Article  Google Scholar 

  38. Z. Pan, B. Liu, J. Zhai, L. Yao, K. Yang, B. Shen, NaNbO3 two-dimensional platelets induced highly energy storage density in trilayered architecture composites. Nano Energy 40, 587–595 (2017)

    Article  Google Scholar 

  39. K. Zhang, J. Wang, Y. Huang, L.Q. Chen, P. Ganesh, Y. Cao, High-throughput phase-field simulations and machine learning of resistive switching in resistive random-access memory. Npj Comput. Mater. 6(1), 198 (2020)

    Article  Google Scholar 

  40. C. Kim, G. Pilania, R. Ramprasad, From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown. Chem. Mater. 28(5), 1304–1311 (2016)

    Article  Google Scholar 

  41. K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science. Nature 559(7715), 547–555 (2018)

    Article  Google Scholar 

  42. Y. Xu, Q. Qian, i-SISSO: Mutual information-based improved sure independent screening and sparsifying operator algorithm. Eng. Appl. Artif. Intell. 116, 105442 (2022)

    Article  Google Scholar 

  43. Y. Ren, K. Zhang, Y. Zhou, Y. Cao, Phase-field simulation and machine learning study of the effects of elastic and plastic properties of electrodes and solid polymer electrolytes on the suppression of Li dendrite growth. ACS Appl. Mater. Interfaces 14(27), 30658–30671 (2022). https://doi.org/10.1021/acsami.2c03000

    Article  Google Scholar 

  44. Z. Mu, Z. Guo, Y.H. Lin, Simulation of 3-D lithium dendritic evolution under multiple electrochemical states: A parallel phase field approach. Energy Storage Materials 30, 52–58 (2020). https://doi.org/10.1016/j.ensm.2020.04.011

    Article  Google Scholar 

  45. Ajayakumar, G., J. Fojt, J. Tan, and L. Nielsen, Solving the Poisson equation with GPU acceleration. 2023

  46. S. Sakane, T. Takaki, M. Ohno, T. Shimokawabe, T. Aoki, GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy. IOP Conf. Ser. Mater Sci Eng. (2015). https://doi.org/10.1088/1757-899X/84/1/012063

    Article  Google Scholar 

  47. G. Karniadakis, I. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning. Nat. Rev. Phys. (2021). https://doi.org/10.1038/s42254-021-00314-5

    Article  Google Scholar 

  48. R. Mattey, S. Ghosh, A novel sequential method to train physics informed neural networks for allen cahn and cahn hilliard equations. Comput. Methods Appl. Mech. Eng. 390, 114474 (2022). https://doi.org/10.1016/j.cma.2021.114474

    Article  MathSciNet  Google Scholar 

  49. R. Qiu, R. Huang, Y. Xiao, J. Wang, Z. Zhang, J. Yue, Z. Zeng, Y. Wang, Physics-informed neural networks for phase-field method in two-phase flow. Phys. Fluids (2022). https://doi.org/10.1063/5.0091063

    Article  Google Scholar 

  50. Wight, C.L. and J. Zhao, Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive physics informed neural networks. arXiv preprint arXiv:2007.04542, 2020. https://doi.org/10.48550/arXiv.2007.04542

Download references

Acknowledgements

This work was supported by the Korea Institute for Advancement of Technology funded By the Ministry of Trade, Industry& Energy (MOTIE, Korea) (No.P0018649, Fuel Cell Element Part and System Technology Development for Fuel Cell Powered Tram). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2020R1A2C2010986, 2022M3H4A1A04085301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongchoul Kim.

Ethics declarations

Conflict of Interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Kim, D. Recent Computational Approaches for Accelerating Dendrite Growth Prediction: A Short Review. Multiscale Sci. Eng. 5, 119–125 (2023). https://doi.org/10.1007/s42493-024-00098-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-024-00098-7

Keywords

Navigation