Skip to main content
Log in

Recent Studies on the Multiscale Models for Predicting Fracture Toughness of Polymer Nanocomposites

  • Review
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

In this review, we introduce a series of the recent studies that attempted to develop the multiscale models for predicting the fracture toughness of polymer nanocomposites (PNC). Firstly, the overview of the multiscale schematics for predicting the fracture toughness of PNC. Secondly, according to the multiscale schematics, the multiscale models for predicting the fracture toughness of PNC are described: (i) epoxy nanocomposites (NC) including rigid spherical nanoparticles, (ii) thermoplastic/epoxy blends, and (iii) epoxy NC including carbon nanotubes. Finally, we summarize the discussion and provide our perspective on future challenging issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Liu, J. Li, X. Liu, Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Appl. Mater. Interfaces 12, 6503–6515 (2020)

    Article  Google Scholar 

  2. X. Zhang, Z. Liu, Y. Li, C. Wang, Y. Zhu, H. Wang, J. Wang, Robust superhydrophobic epoxy composite coating prepared by dual interfacial enhancement. Chem. Eng. J. 371, 276–285 (2019)

    Article  Google Scholar 

  3. Q. Wu, J. He, F. Wang, X. Yang, J. Zhu, Comparative study on effects of covalentcovalent, covalent-ionic and ionic-ionic bonding of carbon fibers with polyether amine/GO on the interfacial adhesion of epoxy composites. Appl. Surf. Sci. 532, 147359 (2020)

    Article  Google Scholar 

  4. S.Y. Mun, J. Ha, S. Lee, Y. Ju, H.M. Lim, D. Lee, Prediction of enhanced interfacial bonding strength for basalt fiber/epoxy composites by micromechanical and thermomechanical analyses. Compos. A Appl. Sci. Manuf. 142, 106208 (2020)

    Article  Google Scholar 

  5. J. He, H. Wang, Q. Qu, Z. Su, T. Qin, X. Tian, Three-dimensional network constructed by vertically oriented multilayer graphene and SiC nanowires for improving thermal conductivity and operating safety of epoxy composites with ultralow loading. Compos. A Appl. Sci. Manuf. 139, 106062 (2020)

    Article  Google Scholar 

  6. X. Han, T. Wang, P.S. Owuor, S.H. Hwang, C. Wang, J. Sha et al., Ultra-stiff graphene foams as three-dimensional conductive fillers for epoxy resin. ACS Nano 12(11), 11219–11228 (2018)

    Article  Google Scholar 

  7. V.N. Mochalin, I. Neitzel, B.J. Etzold, A. Peterson, G. Palmese, Y. Gogotsi, Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano 5(9), 7494–7502 (2011)

    Article  Google Scholar 

  8. M.F. DiBerardino, R.A. Pearson, The effect of particle size on synergistic toughening of boron nitride-rubber hybrid epoxy composites. ACS Symp. Ser. Am. Chem. Soc. 759, 213–229 (2000)

    Google Scholar 

  9. C. Zhou, Z. Li, J. Li, T. Yuan, B. Chen, X. Ma et al., Epoxy composite coating with excellent anticorrosion and self-healing performances based on multifunctional zeolitic imidazolate framework derived nanocontainers. Chem. Eng. J. 385, 123835 (2020)

    Article  Google Scholar 

  10. J. Sun, C. Wang, J.C.C. Yeo, D. Yuan, H. Li, L.P. Stubbs, C. He, Lignin epoxy composites: preparation, morphology, and mechanical properties. Macromol Mater. Eng. 301(3), 328–336 (2016)

    Article  Google Scholar 

  11. Y. Zeng, L. Ci, B.J. Carey, R. Vajtai, P.M. Ajayan, Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites. ACS Nano 4(11), 6798–6804 (2010)

    Article  Google Scholar 

  12. L. Chen, S. Chai, K. Liu, N. Ning, J. Gao, Q. Liu et al., Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. ACS Appl. Mater. Interfaces 4(8), 4398–4404 (2012)

    Article  Google Scholar 

  13. L. Zhu, C. Feng, Y. Cao, Corrosion behavior of epoxy composite coatings reinforced with reduced graphene oxide nanosheets in the high salinity environments. Appl. Surf. Sci. 493, 889–896 (2019)

    Article  Google Scholar 

  14. L.-C. Tang, Y.-J. Wan, K. Peng, Y.-B. Pei, L.-B. Wu, L.-M. Chen et al., Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles. Compos. A Appl. Sci. Manuf. 45, 95–101 (2013)

    Article  Google Scholar 

  15. X. Huang, T. Iizuka, P. Jiang, Y. Ohki, T. Tanaka, Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J. Phys. Chem. C 116(25), 13629–13639 (2012)

    Article  Google Scholar 

  16. L.-X. Gong, L. Zhao, L.-C. Tang, H.-Y. Liu, Y.-W. Mai, Balanced electrical, thermal and mechanical properties of epoxy composites filled with chemically reduced graphene oxide and rubber nanoparticles. Compos. Sci. Technol. 121, 104–114 (2015)

    Article  Google Scholar 

  17. L.-C. Tang, Y.-J. Wan, D. Yan, Y.-B. Pei, L. Zhao, Y.-B. Li et al., The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013)

    Article  Google Scholar 

  18. J. Jia, X. Sun, X. Lin, X. Shen, Y.-W. Mai, J.-K. Kim, Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8(6), 5774–5783 (2014)

    Article  Google Scholar 

  19. S. Chandrasekaran, N. Sato, F. Tolle, R. Mülhaupt, B. Fiedler, K. Schulte, Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97, 90–99 (2014)

    Article  Google Scholar 

  20. Y.-J. Wan, L.-C. Tang, L.-X. Gong, D. Yan, Y.-B. Li, L.-B. Wu et al., Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69, 467–480 (2014)

    Article  Google Scholar 

  21. Y.-J. Wan, L.-X. Gong, L.-C. Tang, L.-B. Wu, J.-X. Jiang, Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos. A Appl. Sci. Manuf. 64, 79–89 (2014)

    Article  Google Scholar 

  22. Y.T. Park, Y. Qian, C. Chan, T. Suh, M.G. Nejhad, C.W. Macosko et al., Epoxy toughening with low graphene loading. Adv. Funct. Mater. 25(4), 575–585 (2015)

    Article  Google Scholar 

  23. L.-C. Tang, H. Zhang, S. Sprenger, L. Ye, Z. Zhang, Fracture mechanisms of epoxybasedternary composites filled with rigid-soft particles. Compos. Sci. Technol. 72(5), 558–565 (2012)

    Article  Google Scholar 

  24. M. Kucharek, W. MacRae, L. Yang, Investigation of the effects of silica aerogel particles on thermal and mechanical properties of epoxy composites. Compos. A Appl. Sci. Manuf. 139, 106108 (2020)

    Article  Google Scholar 

  25. Y. Ma, H. Di, Z. Yu, L. Liang, L. Lv, Y. Pan et al., Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research. Appl. Surf. Sci. 360, 936–945 (2016)

    Article  Google Scholar 

  26. J. Ligoda-Chmiel, R.E. Sliwa, M. Potoczek, Flammability and acoustic absorption of alumina foam/tri-functional epoxy resin composites manufactured by the infiltration process. Compos. Part B-Eng. 112, 196–202 (2017)

    Article  Google Scholar 

  27. D.V. A. Ceretti, L.C. Escobar da Silva, M. do Carmo Gonçalves, D.J. Carastan, The role of dispersion technique and type of clay on the mechanical properties of clay/ epoxy composites. Macromolecular Symposia: Wiley Online Library 1800055 (2019).

  28. B. Wetzel, P. Rosso, F. Haupert, K. Friedrich, Epoxy nanocomposites–fracture and toughening mechanisms. Eng. Fract. Mech. 73(16), 2375–2398 (2006)

    Article  Google Scholar 

  29. Y.L. Liang, R. Pearson, The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites (HESRNs). Polymer 51(21), 4880–4890 (2010)

    Article  Google Scholar 

  30. J. Fu, M. Zhang, L. Jin, L. Liu, N. Li, L. Shang et al., Enhancing interfacial properties of carbon fibers reinforced epoxy composites via Layer-by-Layer self assembly GO/SiO2 multilayers films on carbon fibers surface. Appl. Surf. Sci. 470, 543–554 (2019)

    Article  Google Scholar 

  31. O. Zabihi, M. Ahmadi, S. Nikafshar, K.C. Preyeswary, M. Naebe, A technical review on epoxy-clay nanocomposites: Structure, properties, and their applications in fiber reinforced composites. Compos. Part B-Eng. 135, 1–24 (2018)

    Article  Google Scholar 

  32. X. Xu, B. Zhang, K. Liu, D. Liu, M. Bai, Y. Li, Finite element simulation and analysis of the dielectric properties of unidirectional aramid/epoxy composites. Polym. Compos. 39(S4), 2226–2233 (2018)

    Article  Google Scholar 

  33. L.-C. Hao, Z.-X. Li, F. Sun, K. Ding, X.-N. Zhou, Z.-X. Song et al., High-performance epoxy composites reinforced with three-dimensional Al2O3 ceramic framework. Compos. A Appl. Sci. Manuf. 127, 105648 (2019)

    Article  Google Scholar 

  34. H. Wang, H. Shin, Influence of nanoparticulate diameter on fracture toughness improvement of polymer nanocomposites by a nanoparticle debonding mechanism: a multiscale study. Eng. Fract. Mech. 261, 108261 (2022)

    Article  Google Scholar 

  35. H. Shin, Multiscale model to predict fracture toughness of CNT/epoxy nanocomposites. Compos. Struct. 272, 114236 (2021)

    Article  Google Scholar 

  36. H. Shin, M. Cho, Multiscale model to predict fatigue crack propagation behavior of thermoset polymeric nanocomposites. Compos. A Appl. Sci. Manuf. 99, 23–31 (2017)

    Article  Google Scholar 

  37. H. Shin, B. Kim, J.-G. Han, M.Y. Lee, J.K. Park, M. Cho, Fracture toughness enhancement of thermoplastic/epoxy blends by the plastic yield of toughening agents: a multiscale analysis. Compos. Sci. Technol. 145, 173–180 (2017)

    Article  Google Scholar 

  38. M.M. Shokrieh, A. Zeinedini, Effect of CNTs debonding on mode I fracture toughness of polymeric nanocomposites. Mater. Design 101, 56–65 (2016)

    Article  Google Scholar 

  39. M. Quaresimin, M. Salviato, M. Zappalorto, A multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocomposites. Compos. Sci. Technol. 91, 16–21 (2014)

    Article  Google Scholar 

  40. M. Zappalorto, M. Salviato, M. Quaresimin, A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids. Compos. Sci. Technol. 72(14), 1683–1691 (2012)

    Article  Google Scholar 

  41. M. Salviato, M. Zappalorto, M. Quaresimin, Plastic shear bands and fracture toughness improvements of nanoparticle filled polymers: a multiscale analytical model. Compos. Part A Appl. Sci. Manuf. 48, 144–152 (2013)

    Article  Google Scholar 

  42. M. Quaresimin, K. Schulte, M. Zappalorto, S. Chandrasekaran, Toughening mechanisms in polymer nanocomposites: from experiments to modelling. Compos. Sci. Technol. 123, 187–204 (2016)

    Article  Google Scholar 

  43. H.D. Wagner, P.M. Ajayan, K. Schulte, Nanocomposite toughness from a pull-out mechanism. Compos. Sci. Technol. 83, 27–31 (2013)

    Article  Google Scholar 

  44. B. Lauke, On the effect of particle size on fracture toughness of polymer composites. Compos. Sci. Technol. 68(15–16), 3365–3372 (2008)

    Article  Google Scholar 

  45. Y. Huang, A. Kinloch, Modeling of the toughening mechanisms in rubber-modified epoxy polymers part II: a quantitative description of the microstructure fracture property relationships. J. Mater. Sci. 27, 2763–2769 (1992)

    Article  Google Scholar 

  46. A.G. Evans, S. Williams, P.W.R. Beaumont, On the toughness of particulate filled polymers. J. Mater. Sci. 20(10), 3668–3674 (1985)

    Article  Google Scholar 

  47. J. Choi, S. Yu, S. Yang, M. Cho, The glass transition and thermoelastic behavior of epoxy based nanocomposites: a molecular dynamics study. Polymer 52, 5197–5203 (2011)

    Article  Google Scholar 

  48. S. Yang, M. Cho, Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites. Appl. Phys. Lett. 93, 043111 (2008)

    Article  Google Scholar 

  49. S. Yu, S. Yang, M. Cho, Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50, 945–952 (2009)

    Article  Google Scholar 

  50. H. Shin, J. Choi, M. Cho, An efficient multiscale homogenization modeling approach to describe hyperelastic behavior of polymer nanocomposites. Compos. Sci. Technol. 175, 128–134 (2019)

    Article  Google Scholar 

  51. G.M. Odegard, T.C. Clancy, T.S. Gates, Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46, 553–562 (2005)

    Article  Google Scholar 

  52. S. Yu, S. Yang, M. Cho, Multiscale modeling of cross-linked epoxy nanocomposites to characterize the effect of particle size on thermal conductivity. J. Appl. Phys. 110, 124302 (2011)

    Article  Google Scholar 

  53. H. Shin, S. Yang, S. Chang, S. Yu, M. Cho, Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance. Polymer 54, 1543–1554 (2013)

    Article  Google Scholar 

  54. M. Cho, S. Yang, S. Chang, S. Yu, A study on the prediction of the mechanical properties of nanoparticulate composites using the homogenization method with the effective interface concept. Int. J. Numer. Meth Eng. 85, 1564–1583 (2011)

    Article  MATH  Google Scholar 

  55. B. Kim, J. Choi, S. Yang, S. Yu, M. Cho, Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites. Polymer 60, 186–197 (2015)

    Article  Google Scholar 

  56. S. Yang, S. Yu, W. Kyoung, D.-S. Han, M. Cho, Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections. Polymer 53, 623–633 (2012)

    Article  Google Scholar 

  57. J. Choi, S. Yang, S. Yu, H. Shin, M. Cho, Method of scale bridging for thermoelasticity of cross-linked epoxy/SiC nanocomposites at a wide range of temperatures. Polymer 53, 5178–5189 (2012)

    Article  Google Scholar 

  58. S. Yang, J. Choi, M. Cho, Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: molecular dynamics study. ACS Appl. Mater. Interfaces 4, 4792–4799 (2012)

    Article  Google Scholar 

  59. H. Shin, S. Chang, S. Yang, B.D. Youn, M. Cho, Statistical multiscale homogenization approach for analyzing polymer nanocomposites that include model inherent uncertainties of molecular dynamics simulations. Compos. Part B Eng. 87, 120–131 (2016)

    Article  Google Scholar 

  60. H. Shin, S. Yang, J. Choi, S. Chang, M. Cho, Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: a multiscale approach. Chem. Phys. Lett. 635, 80–85 (2015)

    Article  Google Scholar 

  61. S.J. Park, K. Li, S.K. Hong, Thermal stabilities and mechanical interfacial properties of polyethresulfone-modified epoxy resin. Solid State Phenom. 111, 159–162 (2006)

    Article  Google Scholar 

  62. J. Stein, A. Wilkilson, The influence of pes and triblock copolymer on the processing and properties of highly crosslinked epoxy matrices 15th European Conference of Composite Materials, Venice, Italy (2012).

  63. N. Lachman, H.W. Daniel, Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites. Compos. Part A Appl. Sci. Manuf. 41(9), 1093–1098 (2010)

    Article  Google Scholar 

  64. F.H. Gojny, M.H.G. Wichmann, B. Fiedlerf, K. Schultes, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos. Sci. Technol. 65(15–16), 2300–2313 (2005)

    Article  Google Scholar 

  65. M.R. Ayatollahi, S. Shadlou, M.M. Shokrieh, Fracture toughness of epoxy/multiwalled carbon nanotube nano-composites under bending and shear loading conditions. Mater. Des. 32(4), 2115–2124 (2011)

    Article  Google Scholar 

  66. H. Shin, K. Baek, J.-G. Han, M. Cho, Homogenization analysis of polymeric nanocomposites containing nanoparticulate clusters. Compos. Sci. Technol. 138, 217–224 (2017)

    Article  Google Scholar 

  67. K. Baek, H. Shin, T. Yoo, M. Cho, Two-step multiscale homogenization for mechanical behaviour of polymeric nanocomposites with nanoparticulate agglomerations. Compos. Sci. Technol. 179, 97–105 (2019)

    Article  Google Scholar 

  68. K. Baek, H. Shin, M. Cho, Multiscale modeling of mechanical behaviors of nano-SiC/epoxy nanocomposites with modified interphase model: effect of nanoparticle clustering. Compos. Sci. Technol. 203, 108572 (2021)

    Article  Google Scholar 

  69. K. Baek, H. Park, H. Shin, S. Yang, M. Cho, Multiscale modeling to evaluate combined effect of covalent grafting and clustering of silica nanoparticles on mechanical behaviors of polyimide matrix composites. Compos. Sci. Technol. 206, 108673 (2021)

    Article  Google Scholar 

  70. Y.-S. Kim, J.-H. Lee, S.-J. Park, Effect of ambient plasma treatment on single-walled carbon nanotubes-based epoxy/fabrics for improving fracture toughness and electromagnetic shielding effectiveness. Compos. Part A Appl. Sci. Manuf. 148, 106456 (2021)

    Article  Google Scholar 

  71. N. Domun, H. Hadavinia, T. Zhang, T. Sainsbury, G.H. Liaghat, S. Vahid, Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status. Nanoscale 7, 10294–10329 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C1004353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunseong Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Shin, H. Recent Studies on the Multiscale Models for Predicting Fracture Toughness of Polymer Nanocomposites. Multiscale Sci. Eng. 4, 1–9 (2022). https://doi.org/10.1007/s42493-022-00075-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-022-00075-y

Keywords

Navigation