TL Anderson, Fracture mechanics, in Fundamentals and applications, vol 13, issue 4 (Taylor & Francis Group, 2005). https://doi.org/10.1007/s42947-020-0181-2
G. Biresaw, C.J. Carriere, Correlation between mechanical adhesion and interfacial properties of starch/biodegradable polyester blends. J. Polym. Sci. Part B Polym. Phys. 39(9), 920–930 (2001). https://doi.org/10.1002/polb.1067
Article
Google Scholar
B. Brenken, Extrusion deposition additive manufacturing of fiber reinforced semi-crystalline polymers. School of Aeronautics & Astronautics, p. 248 (2017)
C. Casavola, A. Cazzato, V. Moramarco, C. Pappalettere, Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater. Des. 90, 453–458 (2016). https://doi.org/10.1016/j.matdes.2015.11.009
Article
Google Scholar
M.K. Chaudhury, T. Weaver, C.Y. Hui, E.J. Kramer, M.K. Chaudhury, T. Weaver, Adhesive contact of cylindrical lens and a flat sheet. J. Appl. Phys. 80(1), 30–37 (1996). https://doi.org/10.1063/1.362819
Article
Google Scholar
M. Ciavarella, J. Joe, A. Papangelo, J.R. Barber, The role of adhesion in contact mechanics. J. R. Soc. Interface. (2019). https://doi.org/10.1098/rsif.2018.0738
Article
Google Scholar
Balseal, Coefficient of thermal expansion for various materials at different temperatures (2004). www.balseal.com
M. Comninou, J. Dundurs, J.R. Barber, Planar hertz contact with heat conduction. J. Appl. Mech. Trans. ASME 48(3), 549–554 (1981). https://doi.org/10.1115/1.3157672
Article
MATH
Google Scholar
M. Comninou, J.R. Barber, J. Dundurs, Heat conduction through a flat punch. J. Appl. Mech. Trans. ASME 48(4), 871–875 (1981). https://doi.org/10.1115/1.3157748
MathSciNet
Article
MATH
Google Scholar
S.F. Costa, F.M. Duarte, J.A. Covas, Estimation of filament temperature and adhesion development in fused deposition techniques. J. Mater. Process. Technol. 245, 167–179 (2017). https://doi.org/10.1016/j.jmatprotec.2017.02.026
Article
Google Scholar
E. Cuan-Urquizo, S. Yang, A. Bhaskar, Mechanical characterisation of additively manufactured material having lattice microstructure. IOP Conf. Ser. Mater. Sci. Eng. 74(1), 012004 (2015). https://doi.org/10.1088/1757-899X/74/1/012004
Article
Google Scholar
E. Cuan-Urquizo, E. Barocio, V. Tejada-Ortigoza, R.B. Pipes, C.A. Rodriguez, A. Roman-Flores, Characterization of the mechanical properties of FFF structures and materials: a review on the experimental, computational and theoretical approaches. Materials (2019). https://doi.org/10.3390/ma12060895
Article
Google Scholar
N. Dusunceli, N. Theilgaard, Effects of temperature on the relaxation behavior of poly (lactic acid). 1–4 (2016). https://doi.org/10.2417/spepro.006761
P.J. Herrera Franco, A. Valadez-González, Fiber-matrix adhesion in natural fiber composites. Nat. Fibers Biopolym. Biocompos. (2005). https://doi.org/10.1201/9780203508206.ch6
Article
Google Scholar
B. Huang, S. Singamneni, Raster angle mechanics in fused deposition modelling. J. Compos. Mater. 49(3), 363–383 (2015). https://doi.org/10.1177/0021998313519153
Article
Google Scholar
M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 9(5), 552–571 (2010). https://doi.org/10.1111/j.1541-4337.2010.00126.x
Article
Google Scholar
K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 324(1558), 301–313 (1971). https://doi.org/10.1098/rspa.1971.0141
Article
Google Scholar
K.L. Johnson, Contact mechanics (Cambridge University Press, Cambridge, 1985)
Book
Google Scholar
S. Kisin, J.B. Vukić, P.G.T. Van Der Varst, G. De With, C.E. Koning, Estimating the polymer—metal work of adhesion from molecular dynamics simulations. Chem. Mater. 19(4), 903–907 (2007). https://doi.org/10.1021/cm0621702
Article
Google Scholar
P. Kulkarni, D. Dutta, Deposition strategies and resulting part stiffnesses in fused deposition modeling. J. Manuf. Sci. E. Trans. ASME 121(1), 93–103 (1999). https://doi.org/10.1115/1.2830582
Article
Google Scholar
L.T. Lim, R. Auras, M. Rubino, Processing technologies for poly(lactic acid). Progr. Polym. Sci. (Oxford) 33(8), 820–852 (2008). https://doi.org/10.1016/j.progpolymsci.2008.05.004
Article
Google Scholar
C. Luo, M. Mrinal, X. Wang, Y. Hong, Bonding widths of deposited polymer strands in additive manufacturing. Materials 14(4), 1–19 (2021). https://doi.org/10.3390/ma14040871
Article
Google Scholar
C. McIlroy, P.D. Olmsted, Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing. J. Rheol. 61(2), 379–397 (2017). https://doi.org/10.1122/1.4976839
Article
Google Scholar
T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012
Article
Google Scholar
H.S. Patanwala, D. Hong, S.R. Vora, B. Bognet, A.W.K. Ma, The microstructure and mechanical properties of 3d printed carbon nanotube-polylactic acid composites. Polym Compos (2018). https://doi.org/10.1002/pc.24494
Article
Google Scholar
X. Peng, G. Huang, Adhesive contact between dissimilar cylinders subject to a temperature difference. Int. J. Solids Struct. 90, 22–29 (2016). https://doi.org/10.1016/j.ijsolstr.2016.04.014
Article
Google Scholar
D. Popescu, A. Zapciu, C. Amza, F. Baciu, R. Marinescu, FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym. Test. 69(May), 157–166 (2018). https://doi.org/10.1016/j.polymertesting.2018.05.020
Article
Google Scholar
H. Prajapati, D. Ravoori, R.L. Woods, A. Jain, Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM). Addit. Manuf. 21(February), 84–90 (2018). https://doi.org/10.1016/j.addma.2018.02.019
Article
Google Scholar
H. Prajapati, S.S. Salvi, D. Ravoori, M. Qasaimeh, A. Adnan, A. Jain, Improved print quality in fused filament fabrication through localized dispensing of hot air around the deposited filament. Addit. Manuf. 40(February), 101917 (2021). https://doi.org/10.1016/j.addma.2021.101917
Article
Google Scholar
R. Rane, A. Kulkarni, H. Prajapati, R. Taylor, A. Jain, V. Chen, Post-process effects of isothermal annealing and initially applied static uniaxial loading on the ultimate tensile strength of fused filament fabrication parts. Materials (2020). https://doi.org/10.3390/ma13020352
Article
Google Scholar
A.K. Ravi, A. Deshpande, K.H. Hsu, An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J. Manuf. Process. 24, 179–185 (2016). https://doi.org/10.1016/j.jmapro.2016.08.007
Article
Google Scholar
D. Ravoori, H. Prajapati, V. Talluru, A. Adnan, A. Jain, Nozzle-integrated pre-deposition and post-deposition heating of previously deposited layers in polymer extrusion based additive manufacturing. Addit. Manuf. 28(June), 719–726 (2019). https://doi.org/10.1016/j.addma.2019.06.006
Article
Google Scholar
D. Ravoori, S. Salvi, H. Prajapati, M. Qasaimeh, A. Adnan, A. Jain, Void reduction in fused filament fabrication (FFF) through in situ nozzle-integrated compression rolling of deposited filaments. Virtual Phys. Prototyp. (2021). https://doi.org/10.1080/17452759.2021.1890986
Article
Google Scholar
J.E. Seppala, S. Hoon Han, K.E. Hillgartner, C.S. Davis, K.B. Migler, Weld formation during material extrusion additive manufacturing. Soft Matter 13(38), 6761–6769 (2017). https://doi.org/10.1039/c7sm00950j
Article
Google Scholar
M.P. Serdeczny, R. Comminal, D.B. Pedersen, J. Spangenberg, Experimental and analytical study of the polymer melt flow through the hot-end in material extrusion additive manufacturing. Addit. Manuf. 32(October 2019), 100997 (2020). https://doi.org/10.1016/j.addma.2019.100997
Article
Google Scholar
J.N. Siddall, Welding, brazing, and soldering. Mech. Des. (2019). https://doi.org/10.3138/9781487579890-121
Article
Google Scholar
S. Solarski, M. Ferreira, E. Devaux, Thermal and mechanical characteristics of polylactide filaments drawn at different temperatures. J. Text. Inst. 98(3), 227–236 (2007). https://doi.org/10.1080/00405000701476179
Article
Google Scholar
J.C. Suérez, S. Miguel, P. Pinilla, F. López, Molecular dynamics simulation of polymer-metal bonds. J. Adhes. Sci. Technol. 22(13), 1387–1400 (2008). https://doi.org/10.1163/156856108X305732
Article
Google Scholar
J. Sweeney, P. Spencer, K. Nair, P. Coates, Modelling the mechanical and strain recovery behaviour of partially crystalline PLA. Polymers (2019). https://doi.org/10.3390/polym11081342
Article
Google Scholar
J.A. Williams, R.S. Dwyer-Joyce, Contact between solid surfaces, in modern tribology handbook: volume one: principles of tribology, pp. 121–162 (2000).https://doi.org/10.1007/978-1-4684-0335-0_3
F. Yang, R. Pitchumani, Healing of thermoplastic polymers at an interface under nonisothermal conditions. Macromolecules 35(8), 3213–3224 (2002). https://doi.org/10.1021/ma010858o
Article
Google Scholar
O. Yousefzade, J. Jeddi, E. Vazirinasab, H. Garmabi, Poly(lactic acid) phase transitions in the presence of nano calcium carbonate: opposing effect of nanofiller on static and dynamic measurements. J. Thermoplast. Compos. Mater. 32(3), 312–327 (2019). https://doi.org/10.1177/0892705718759386
Article
Google Scholar
C. Zhou, H. Guo, J. Li, S. Huang, H. Li, Mechanical properties. RSC Adv. (2016). https://doi.org/10.1039/c6ra23610c
Article
Google Scholar
C.W. Ziemian, R.D. Ziemian, K.V. Haile, Characterization of stiffness degradation caused by fatigue damage of additive manufactured parts. Mater. Des. 109, 209–218 (2016). https://doi.org/10.1016/j.matdes.2016.07.080
Article
Google Scholar