Skip to main content

Modeling the Effect of In Situ Nozzle-Integrated Compression Rolling on the Void Reduction and Filaments-Filament Adhesion in Fused Filament Fabrication (FFF)

Abstract

Fused filament fabrication (FFF) is one of the most common additive manufacturing techniques, in which, continuously extruded semi-molten filaments are deposited in a layer-by-layer manner. The quality of the manufactured part heavily depends on filament-filament contact, filament-filament interfacial adhesion and overall void fraction. In our earlier work, we used a novel fabrication method that applied additional compression to newly deposited filaments using an in situ roller ball. We then studied the effect of in situ compression on the quality of adhesion, and subsequently, on the thermal and mechanical properties of the printed parts. Under an optimized set of experimental conditions, a significant improvement in material toughness and tensile strength was measured. Here, we have developed an integrated theoretical model that predicts the impact of in situ compression rolling on filament-filament contact during deposition. The impact of key parameters associated with the rolling process, such as ball weight, ball temperature and filament temperature on printed part height, void fraction and filament adhesion are studied. Based on the Johnson–Kendall–Roberts (JKR) contact theory and the theory of elasticity, our mathematical model predicts the evolution of filament-to-filament contact width, the corresponding void fraction and part height in a representative volume element of the printed part. Our theoretical predictions are in good agreement with experimental measurements. Later, the theoretical model is used to optimize the filament temperature during the rolling process. Specifically, we find that isothermal contact between filaments results in optimal adhesion. We have concluded that parts fabricated from a system integrated with an in situ preheating and in situ post-rolling would yield 3D printed plastic parts with enhanced mechanical properties suitable for various structural applications.

This is a preview of subscription content, access via your institution.

Fig. 1

Reproduced with permission from [33]

Fig. 2

Reproduced with permission from [33]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. TL Anderson, Fracture mechanics, in Fundamentals and applications, vol 13, issue 4 (Taylor & Francis Group, 2005). https://doi.org/10.1007/s42947-020-0181-2

  2. G. Biresaw, C.J. Carriere, Correlation between mechanical adhesion and interfacial properties of starch/biodegradable polyester blends. J. Polym. Sci. Part B Polym. Phys. 39(9), 920–930 (2001). https://doi.org/10.1002/polb.1067

    Article  Google Scholar 

  3. B. Brenken, Extrusion deposition additive manufacturing of fiber reinforced semi-crystalline polymers. School of Aeronautics & Astronautics, p. 248 (2017)

  4. C. Casavola, A. Cazzato, V. Moramarco, C. Pappalettere, Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater. Des. 90, 453–458 (2016). https://doi.org/10.1016/j.matdes.2015.11.009

    Article  Google Scholar 

  5. M.K. Chaudhury, T. Weaver, C.Y. Hui, E.J. Kramer, M.K. Chaudhury, T. Weaver, Adhesive contact of cylindrical lens and a flat sheet. J. Appl. Phys. 80(1), 30–37 (1996). https://doi.org/10.1063/1.362819

    Article  Google Scholar 

  6. M. Ciavarella, J. Joe, A. Papangelo, J.R. Barber, The role of adhesion in contact mechanics. J. R. Soc. Interface. (2019). https://doi.org/10.1098/rsif.2018.0738

    Article  Google Scholar 

  7. Balseal, Coefficient of thermal expansion for various materials at different temperatures (2004). www.balseal.com

  8. M. Comninou, J. Dundurs, J.R. Barber, Planar hertz contact with heat conduction. J. Appl. Mech. Trans. ASME 48(3), 549–554 (1981). https://doi.org/10.1115/1.3157672

    Article  MATH  Google Scholar 

  9. M. Comninou, J.R. Barber, J. Dundurs, Heat conduction through a flat punch. J. Appl. Mech. Trans. ASME 48(4), 871–875 (1981). https://doi.org/10.1115/1.3157748

    MathSciNet  Article  MATH  Google Scholar 

  10. S.F. Costa, F.M. Duarte, J.A. Covas, Estimation of filament temperature and adhesion development in fused deposition techniques. J. Mater. Process. Technol. 245, 167–179 (2017). https://doi.org/10.1016/j.jmatprotec.2017.02.026

    Article  Google Scholar 

  11. E. Cuan-Urquizo, S. Yang, A. Bhaskar, Mechanical characterisation of additively manufactured material having lattice microstructure. IOP Conf. Ser. Mater. Sci. Eng. 74(1), 012004 (2015). https://doi.org/10.1088/1757-899X/74/1/012004

    Article  Google Scholar 

  12. E. Cuan-Urquizo, E. Barocio, V. Tejada-Ortigoza, R.B. Pipes, C.A. Rodriguez, A. Roman-Flores, Characterization of the mechanical properties of FFF structures and materials: a review on the experimental, computational and theoretical approaches. Materials (2019). https://doi.org/10.3390/ma12060895

    Article  Google Scholar 

  13. N. Dusunceli, N. Theilgaard, Effects of temperature on the relaxation behavior of poly (lactic acid). 1–4 (2016). https://doi.org/10.2417/spepro.006761

  14. P.J. Herrera Franco, A. Valadez-González, Fiber-matrix adhesion in natural fiber composites. Nat. Fibers Biopolym. Biocompos. (2005). https://doi.org/10.1201/9780203508206.ch6

    Article  Google Scholar 

  15. B. Huang, S. Singamneni, Raster angle mechanics in fused deposition modelling. J. Compos. Mater. 49(3), 363–383 (2015). https://doi.org/10.1177/0021998313519153

    Article  Google Scholar 

  16. M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 9(5), 552–571 (2010). https://doi.org/10.1111/j.1541-4337.2010.00126.x

    Article  Google Scholar 

  17. K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 324(1558), 301–313 (1971). https://doi.org/10.1098/rspa.1971.0141

    Article  Google Scholar 

  18. K.L. Johnson, Contact mechanics (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  19. S. Kisin, J.B. Vukić, P.G.T. Van Der Varst, G. De With, C.E. Koning, Estimating the polymer—metal work of adhesion from molecular dynamics simulations. Chem. Mater. 19(4), 903–907 (2007). https://doi.org/10.1021/cm0621702

    Article  Google Scholar 

  20. P. Kulkarni, D. Dutta, Deposition strategies and resulting part stiffnesses in fused deposition modeling. J. Manuf. Sci. E. Trans. ASME 121(1), 93–103 (1999). https://doi.org/10.1115/1.2830582

    Article  Google Scholar 

  21. L.T. Lim, R. Auras, M. Rubino, Processing technologies for poly(lactic acid). Progr. Polym. Sci. (Oxford) 33(8), 820–852 (2008). https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  Google Scholar 

  22. C. Luo, M. Mrinal, X. Wang, Y. Hong, Bonding widths of deposited polymer strands in additive manufacturing. Materials 14(4), 1–19 (2021). https://doi.org/10.3390/ma14040871

    Article  Google Scholar 

  23. C. McIlroy, P.D. Olmsted, Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing. J. Rheol. 61(2), 379–397 (2017). https://doi.org/10.1122/1.4976839

    Article  Google Scholar 

  24. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  25. H.S. Patanwala, D. Hong, S.R. Vora, B. Bognet, A.W.K. Ma, The microstructure and mechanical properties of 3d printed carbon nanotube-polylactic acid composites. Polym Compos (2018). https://doi.org/10.1002/pc.24494

    Article  Google Scholar 

  26. X. Peng, G. Huang, Adhesive contact between dissimilar cylinders subject to a temperature difference. Int. J. Solids Struct. 90, 22–29 (2016). https://doi.org/10.1016/j.ijsolstr.2016.04.014

    Article  Google Scholar 

  27. D. Popescu, A. Zapciu, C. Amza, F. Baciu, R. Marinescu, FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym. Test. 69(May), 157–166 (2018). https://doi.org/10.1016/j.polymertesting.2018.05.020

    Article  Google Scholar 

  28. H. Prajapati, D. Ravoori, R.L. Woods, A. Jain, Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM). Addit. Manuf. 21(February), 84–90 (2018). https://doi.org/10.1016/j.addma.2018.02.019

    Article  Google Scholar 

  29. H. Prajapati, S.S. Salvi, D. Ravoori, M. Qasaimeh, A. Adnan, A. Jain, Improved print quality in fused filament fabrication through localized dispensing of hot air around the deposited filament. Addit. Manuf. 40(February), 101917 (2021). https://doi.org/10.1016/j.addma.2021.101917

    Article  Google Scholar 

  30. R. Rane, A. Kulkarni, H. Prajapati, R. Taylor, A. Jain, V. Chen, Post-process effects of isothermal annealing and initially applied static uniaxial loading on the ultimate tensile strength of fused filament fabrication parts. Materials (2020). https://doi.org/10.3390/ma13020352

    Article  Google Scholar 

  31. A.K. Ravi, A. Deshpande, K.H. Hsu, An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J. Manuf. Process. 24, 179–185 (2016). https://doi.org/10.1016/j.jmapro.2016.08.007

    Article  Google Scholar 

  32. D. Ravoori, H. Prajapati, V. Talluru, A. Adnan, A. Jain, Nozzle-integrated pre-deposition and post-deposition heating of previously deposited layers in polymer extrusion based additive manufacturing. Addit. Manuf. 28(June), 719–726 (2019). https://doi.org/10.1016/j.addma.2019.06.006

    Article  Google Scholar 

  33. D. Ravoori, S. Salvi, H. Prajapati, M. Qasaimeh, A. Adnan, A. Jain, Void reduction in fused filament fabrication (FFF) through in situ nozzle-integrated compression rolling of deposited filaments. Virtual Phys. Prototyp. (2021). https://doi.org/10.1080/17452759.2021.1890986

    Article  Google Scholar 

  34. J.E. Seppala, S. Hoon Han, K.E. Hillgartner, C.S. Davis, K.B. Migler, Weld formation during material extrusion additive manufacturing. Soft Matter 13(38), 6761–6769 (2017). https://doi.org/10.1039/c7sm00950j

    Article  Google Scholar 

  35. M.P. Serdeczny, R. Comminal, D.B. Pedersen, J. Spangenberg, Experimental and analytical study of the polymer melt flow through the hot-end in material extrusion additive manufacturing. Addit. Manuf. 32(October 2019), 100997 (2020). https://doi.org/10.1016/j.addma.2019.100997

    Article  Google Scholar 

  36. J.N. Siddall, Welding, brazing, and soldering. Mech. Des. (2019). https://doi.org/10.3138/9781487579890-121

    Article  Google Scholar 

  37. S. Solarski, M. Ferreira, E. Devaux, Thermal and mechanical characteristics of polylactide filaments drawn at different temperatures. J. Text. Inst. 98(3), 227–236 (2007). https://doi.org/10.1080/00405000701476179

    Article  Google Scholar 

  38. J.C. Suérez, S. Miguel, P. Pinilla, F. López, Molecular dynamics simulation of polymer-metal bonds. J. Adhes. Sci. Technol. 22(13), 1387–1400 (2008). https://doi.org/10.1163/156856108X305732

    Article  Google Scholar 

  39. J. Sweeney, P. Spencer, K. Nair, P. Coates, Modelling the mechanical and strain recovery behaviour of partially crystalline PLA. Polymers (2019). https://doi.org/10.3390/polym11081342

    Article  Google Scholar 

  40. J.A. Williams, R.S. Dwyer-Joyce, Contact between solid surfaces, in modern tribology handbook: volume one: principles of tribology, pp. 121–162 (2000).https://doi.org/10.1007/978-1-4684-0335-0_3

  41. F. Yang, R. Pitchumani, Healing of thermoplastic polymers at an interface under nonisothermal conditions. Macromolecules 35(8), 3213–3224 (2002). https://doi.org/10.1021/ma010858o

    Article  Google Scholar 

  42. O. Yousefzade, J. Jeddi, E. Vazirinasab, H. Garmabi, Poly(lactic acid) phase transitions in the presence of nano calcium carbonate: opposing effect of nanofiller on static and dynamic measurements. J. Thermoplast. Compos. Mater. 32(3), 312–327 (2019). https://doi.org/10.1177/0892705718759386

    Article  Google Scholar 

  43. C. Zhou, H. Guo, J. Li, S. Huang, H. Li, Mechanical properties. RSC Adv. (2016). https://doi.org/10.1039/c6ra23610c

    Article  Google Scholar 

  44. C.W. Ziemian, R.D. Ziemian, K.V. Haile, Characterization of stiffness degradation caused by fatigue damage of additive manufactured parts. Mater. Des. 109, 209–218 (2016). https://doi.org/10.1016/j.matdes.2016.07.080

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashfaq Adnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qasaimeh, M., Ravoori, D., Jain, A. et al. Modeling the Effect of In Situ Nozzle-Integrated Compression Rolling on the Void Reduction and Filaments-Filament Adhesion in Fused Filament Fabrication (FFF). Multiscale Sci. Eng. 4, 37–54 (2022). https://doi.org/10.1007/s42493-022-00073-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-022-00073-0

Keywords

  • Additive manufacturing
  • Fused filament fabrication
  • Compression rolling
  • Void fraction
  • Mathematical modeling