Skip to main content
Log in

Analyses of Dislocation Effects on Plastic Deformation

  • Review
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

This paper reviews the dislocation based models that have been used until now to consider dislocation effects on the plastic deformation in the crystalline material. We separate two general strategies: discrete dislocation dynamics models that consider individual dislocations and continuum dislocation dynamics models that consider dislocation density as a state variable to analyze the plastic deformation. Since these methods are very widespread due to suggested new approaches and computational advances they need to be reviewed. The objective of this review is to introduce these methods and comparing existing results in two categories to know which method can be used to reach more accurate results for considering dislocation in crystalline metals. Seventeen papers and thesis were chosen that predicted the stress–strain curve of different crystalline material by emphasizing dislocation effect on their results. Advantages and lacks of both methods are mentioned and it is discussed which method is suitable for stress–strain prediction. It is observed that continuum dislocation dynamics methods can predict the stress–strain curves more efficiently than discreet dislocation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Kolář, M. Benes, J. Kratochvíl, P. Pauš, Acta Phys. Pol. A 134, 667 (2018)

    Google Scholar 

  2. S. Sandfeld, M. Monavari, M. Zaiser, Model. Simul. Mater. Sci. 21, 085006 (2013)

    Google Scholar 

  3. K. Sekido, T. Ohmura, T. Hara, K. Tsuzaki, Mater. Trans. 53, 907 (2012)

    Google Scholar 

  4. U.F. Kocks, A.S. Argon, M.F. Ashby, Mater Sci 19, 20 (1975)

    Google Scholar 

  5. C. Teodosiu, Fundam. Aspects Dislocation Theory 317, 837 (1970)

    Google Scholar 

  6. Y. Estrin, H. Mecking, Acta Metal. 32, 57 (1984)

    Google Scholar 

  7. M.A. Zikry, M. Kao, J. Mech. Phys. Solids 44, 1765 (1996)

    Google Scholar 

  8. R. Gasca-Neri, W.D. Nix, Acta Metal. 22, 257 (1974)

    Google Scholar 

  9. G. Regazzoni, U.F. Kocks, P. Follansbee, Acta.Metal 35, 2865 (1987)

    Google Scholar 

  10. J.P. Sethna, M.K. Bierbaum, K.A. Dahmen, C.P. Goodrich, J.R. Greer, L.X. Hayden, J.P. Kent-Dobias, E.D. Lee, D.B. Liarte, X. Ni, K. Quinn, Annu. Rev. Mater. Res. 47, 20 (2017)

    Google Scholar 

  11. F. Prinz, A. Argon, Acta Metal. 32, 1021 (1984)

    Google Scholar 

  12. Y. Estrin, L. Toth, A. Molinari, Y. Bréchet, Acta Mater. 46, 5509 (1998)

    Google Scholar 

  13. E. Nes, Prog. Mater. Sci. 41, 129 (1997)

    Google Scholar 

  14. E. Nes, K. Marthinsen, Mater. Sci. Eng. A 322, 176 (2002)

    Google Scholar 

  15. E. Nes, K. Marthinsen, Y. Brechet, Scr. Mater. 47, 607 (2002)

    Google Scholar 

  16. E. Nes, K. Marthinsen, B. Holmedal, J. Mater. Sci. Technol. 20, 1377 (2004)

    Google Scholar 

  17. P. Schall, M. Feuerbacher, M. Bartsch, U. Messerschmidt, K. Urban, Philos. Mag. Lett. 79, 785 (1999)

    Google Scholar 

  18. K. Karhausen, F. Roters, J. Mater. Process. Technol. 123, 155 (2002)

    Google Scholar 

  19. G. Prasad, M. Goerdeler, G. Gottstein, Mater. Sci. Eng. A 400, 231 (2005)

    Google Scholar 

  20. W. Nix, J. Gibeling, K. Fuchs, The Role of Long-Range Internal Back Stresses in Creep of Metals, Mechanical Testing for Deformation Model Development (ASTM International, Pennsylvania, 1982)

    Google Scholar 

  21. F. Roters, D. Raabe, G. Gottstein, Acta Mater. 48, 4181 (2000)

    Google Scholar 

  22. H. Mughbrabi, F. Ackermann, K. Herz, ed. By J. Fong, (ASTM International, Pennsylvania, 1979) p. 69

  23. G.V. Prasad, V. Mohles, An improved dislocation density based work hardening model for al-alloys (Fachgruppe für Metallurgie und Werkstofftechnik, Aachen, 2007)

    Google Scholar 

  24. P. Gurla, Aachen University: Aachen, Germany (2007)

  25. W.D. Nix, J.C. Gibeling, D.A. Hughes, Metall. Trans. 16, 2215 (1985)

    Google Scholar 

  26. H. Mughrabi, Mater. Sci. Eng. 85, 15 (1987)

    Google Scholar 

  27. W. Blum, P. Eisenlohr, F. Breutinger, Metall. Mater. Trans. 33, 291 (2002)

    Google Scholar 

  28. K.-S. Cheong, E.P. Busso, Acta Mater. 52, 5665 (2004)

    Google Scholar 

  29. M.E. Gurtin, L. Anand, S.P. Lele, J. Mech. Phys. Solids 55, 1853 (2007)

    MathSciNet  Google Scholar 

  30. A. Arsenlis, D.M. Parks, J. Mech. Phys. Solids 50, 1979 (2002)

    Google Scholar 

  31. H. Gao, Y. Huang, Scr. Mater. 48, 113 (2003)

    Google Scholar 

  32. A. Ma, F. Roters, D. Raabe, Acta Mater. 54, 2169 (2006)

    Google Scholar 

  33. A. Ma, F. Roters, D. Raabe, Acta Mater. 54, 2181 (2006)

    Google Scholar 

  34. A. Ma, F. Roters, Acta Mater. 52, 3603 (2004)

    Google Scholar 

  35. F. Roters, Advanced Material Models for the Crystal Plasticity Finite Element Method: Development of a General CPFEM Framework (Fachgruppe für Materialwissenschaft und Werkstofftechnik, Aachen, 2011)

    Google Scholar 

  36. R.A. Austin, D.L. McDowell, Int. J. Plast. 27, 1 (2011)

    Google Scholar 

  37. J.T. Lloyd, J.D. Clayton, R. Becker, D.L. McDowell, Int. J. Plast. 60, 118 (2014)

    Google Scholar 

  38. D.J. Luscher, F.L. Addessio, M.J. Cawkwell, K.J. Ramos, J. Mech. Phys. Solids 98, 63 (2017)

    MathSciNet  Google Scholar 

  39. T. Nguyen, D.J. Luscher, J.W. Wilkerson, J. Mech. Phys. Solids 108, 1 (2017)

    MathSciNet  Google Scholar 

  40. A. Patra, D.L. McDowell, Philos. Mag. 92, 861 (2012)

    Google Scholar 

  41. Y. Estrin, H. Mecking, Scr. Mater. 27, 647 (1992)

    Google Scholar 

  42. H. Mecking, U.F. Kocks, Acta. Metal. 29, 1865 (1981)

    Google Scholar 

  43. R. Sandström, R. Lagneborg, Acta Metal. 23, 387 (1975)

    Google Scholar 

  44. E. Busso, J. Mech. Phys. Solids 48, 2333 (2000)

    Google Scholar 

  45. M. Mukherjee, U. Prahl, W. Bleck, Steel Res. Int. 81, 1102 (2010)

    Google Scholar 

  46. B. Babu, L.-E. Lindgren, Int. J. Plast. 50, 94 (2013)

    Google Scholar 

  47. X.G. Fan, H. Yang, Int. J. Plast. 27, 1833 (2011)

    Google Scholar 

  48. H. Bok, J. Choi, F. Barlat, D.W. Suh, M.G. Lee, Int. J. Plast. 58, 154 (2014)

    Google Scholar 

  49. H. Gao, Y. Huang, Int. J. Solids. Struct. 38, 2615 (2001)

    Google Scholar 

  50. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Acta Metal. 42, 475 (1994)

    Google Scholar 

  51. L. Toth, C. Gu, B. Beausir, J. Fundenberger, M. Hoffman, Acta Mater. 117, 35 (2016)

    Google Scholar 

  52. D.A. Hughes, N. Hansen, D.J. Bammann, Scr. Mater. 48, 147 (2003)

    Google Scholar 

  53. N.A. Fleck, J.W. Hutchins**on, 33, 295 (1997).

  54. W.D. Nix, H. Gao, J. Mech. Phys. Solids 46, 411 (1998)

    Google Scholar 

  55. B. Bhushan, M. Nosonovsky, Acta Mater. 51, 4331 (2003)

    Google Scholar 

  56. M. Huang, L. Zhao, J. Tong, Int. J. Plast. 28, 141 (2012)

    Google Scholar 

  57. X. Qiu, Y. Huang, W.D. Nix, K.C. Hwang, H. Gao, Acta Mater. 49, 3949 (2001)

    Google Scholar 

  58. S. Brinckmann, T. Siegmund, Y. Huang, Int. J. Plast. 22, 1784 (2006)

    Google Scholar 

  59. R.K. Abu Al-Rub, G.Z. Voyiadjis, Int. J. Plast. 20, 1139 (2004)

    Google Scholar 

  60. G.Z. Voyiadjis, F.H. Abed, Arch. Mech. 57, 299 (2005)

    Google Scholar 

  61. G.Z. Voyiadjis, R.K.A. Al-Rub, Int. J. Solids. Struct. 42, 3998 (2005)

    Google Scholar 

  62. L. Bardella, J. Mech. Phys. Solids 54, 128 (2006)

    MathSciNet  Google Scholar 

  63. H. Lyu, A. Ruimi, H.M. Zbib, Int. J. Plast. 72, 44 (2015)

    Google Scholar 

  64. A. Arsenlis, D.M. Parks, Acta Mater. 47, 1597 (1999)

    Google Scholar 

  65. A. Arsenlis, J. Mech. Phys. Solids 52, 1213 (2004)

    MathSciNet  Google Scholar 

  66. L. Evers, W. Brekelmans, M. Geers, Int. J. Solids. Struct. 41, 5209 (2004)

    Google Scholar 

  67. J.D. Clayton, D.L. McDowell, D.J. Bammann, Int. J. Plast. 22, 210 (2006)

    Google Scholar 

  68. I.J. Beyerlein, C.N. Tomé, Int. J. Plast. 24, 867 (2008)

    Google Scholar 

  69. H. Lim, M.G. Lee, J.H. Kim, B.L. Adams, R.H. Wagoner, Int. J. Plast. 27, 1328 (2011)

    Google Scholar 

  70. H. Askari, J. Young, D. Field, G. Kridli, D. Li, H. Zbib, Philos. Mag. 94, 381 (2013)

    Google Scholar 

  71. H. Askari, M.R. Maughan, N. Abdolrahim, D. Sagapuram, D.F. Bahr, H.M. Zbib, Int. J. Plast. 68, 21 (2015)

    Google Scholar 

  72. D. Li, H. Zbib, X. Sun, M. Khaleel, Int. J. Plast. 52, 3 (2014)

    Google Scholar 

  73. T. Hochrainer, S. Sandfeld, M. Zaiser, P. Gumbsch, J. Mech. Phys. Solids 63, 167 (2014)

    Google Scholar 

  74. S. Sandfeld, E. Thawinan, C. Wieners, Int. J. Plast. 72, 1 (2015)

    Google Scholar 

  75. E.M. Viatkina, W.A.M. Brekelmans, M.G.D. Geers, Int. J. Solids. Struct. 44, 6030 (2007)

    Google Scholar 

  76. K. Kitayama, C.N. Tomé, E.F. Rauch, J.J. Gracio, F. Barlat, Int. J. Plast. 46, 54 (2013)

    Google Scholar 

  77. M.S. Pham, S.R. Holdsworth, K. Janssens, E. Mazza, Int. J. Plast. 47, 143 (2013)

    Google Scholar 

  78. M. Knezevic, R.J. McCabe, R.A. Lebensohn, C.N. Tomé, C. Liu, M.L. Lovato, B. Mihaila, J. Mech. Phys. Solids 61, 2034 (2013)

    Google Scholar 

  79. M. Zecevic, M. Knezevic, Int. J. Plast. 72, 200 (2015)

    Google Scholar 

  80. T. Hochrainer, M. Zaiser, P. Gumbsch, Philos. Mag. 87, 1261 (2007)

    Google Scholar 

  81. O. Bouaziz, N. Guelton, Mater. Sci. Eng. 319, 246 (2001)

    Google Scholar 

  82. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387, 158 (2004)

    Google Scholar 

  83. G. Ananthakrishna, Phys. Rep. 440, 113 (2007)

    MathSciNet  Google Scholar 

  84. G. Ananthakrishna, D. Sahoo, J. Phys. D Appl. Phys. 14, 699 (1981)

    Google Scholar 

  85. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, D.R. Trinkle, Scr. Mater. 56, 313 (2007)

    Google Scholar 

  86. D.M. Norfleet, D.M. Dimiduk, S.J. Polasik, M.D. Uchic, M. Mj, Acta Mater. 56, 2988 (2008)

    Google Scholar 

  87. P.J. Jackson, Z.S. Basinski, Can. J. Phys. 45, 707 (1967)

    Google Scholar 

  88. W. Püschl, R. Frydman, G. Schoeck, Phys. Stat. Solidi 74, 211 (1982)

    Google Scholar 

  89. G. Schoeck, R. Frydman, Phys. Stat. Solidi 53, 661 (1972)

    Google Scholar 

  90. G.I. Taylor, Philos. R. Soc. A Math. Phys. 145, 362 (1934)

    Google Scholar 

  91. G.I. Taylor, Proc. R. Soc. A Math. Phys. 146, 501 (1934)

    Google Scholar 

  92. E. Orowan, Z. Phys. 89, 605 (1934)

    Google Scholar 

  93. M. Polanyi, Z. Phys. 89, 660 (1934)

    Google Scholar 

  94. Z. Basinski, Scr. Mater. 8, 1301 (1974)

    Google Scholar 

  95. V.V. Bulatov, L.L. Hsiung, M. Tang, A. Arsenlis, M.C. Bartelt, W. Cai, J.N. Florando, M. Hiratani, M. Rhee, G. Hommes, T.G. Pierce, Nature 440(7088), 1174 (2006)

    Google Scholar 

  96. R. Madec, B. Devincre, L. Kubin, Phys. Rev. Lett. 89, 255508 (2002)

    Google Scholar 

  97. M. Zaiser, M.C. Miguel, I. Groma, Phys. Rev. B 64, 224102 (2001)

    Google Scholar 

  98. L.S. Tóth, A. Molinari, Y. Estrin, J. Eng. Mater. T 124, 71 (2002)

    Google Scholar 

  99. G.I. Taylor, H. Quinney, Proc. R. Soc. A Math. Phys. 143, 307 (1934)

    Google Scholar 

  100. W.G. Johnston, J.J. Gilman, J. Appl. Phys. 30, 129 (1959)

    Google Scholar 

  101. G.A. Webster, Philos. Mag. 14, 775 (1966)

    Google Scholar 

  102. S. Sandfeld, T. Hochrainer, M. Zaiser, P. Gumbsch, J. Mater. Res. 26, 623 (2011)

    Google Scholar 

  103. N. Hansen, D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. 81, 141 (1986)

    Google Scholar 

  104. L.P. Kubin, Y. Estrin, Acta Metal. 38, 697 (1990)

    Google Scholar 

  105. S. Sandfeld, M. Zaiser, T. Hochrainer, Expansion of quasi-discrete dislocation loops in the context of a 3D continuum theory of curved dislocations. AIP Conf. Proc. 1168, 1148 (2009)

    Google Scholar 

  106. T. Hochrainer, Philos. Mag. 95, 1321 (2015)

    Google Scholar 

  107. T. Hochrainer, J. Mech. Phys. Solids 88, 12 (2016)

    MathSciNet  Google Scholar 

  108. M. Monavari, M. Zaiser, https://arxiv.org/abs/170903694 (arXiv preprint) (2017)

  109. P.D. Ispánovity, I. Groma, G. Györgyi, F.F. Csikor, D. Weygand, Phys. Rev. Lett. 105, 085503 (2010)

    Google Scholar 

  110. P.D. Ispánovity, Á. Hegyi, I. Groma, G. Györgyi, K. Ratter, D. Weygand, Acta Mater. 61, 6234 (2013)

    Google Scholar 

  111. J. Lepinoux, L.P. Kubin, A simulation. Scr. Metall. 21, 6 (1987)

    Google Scholar 

  112. R.J. Amodeo, N.M. Ghoniem, Phys. Rev. B 41, 6958 (1990)

    Google Scholar 

  113. A. Gulluoglu, D.J. Srolovitz, R. LeSar, P. Lomdahl (1989)

  114. E. Van der Giessen, A. Needleman, Model. Simul. Mater. Sci. 3, 689 (1995)

    Google Scholar 

  115. H. Wang, R. LeSar, Philos. Mag. A 71, 149 (1995)

    Google Scholar 

  116. K.C. Le, H. Stumpf, Int. J. Plast. 12, 611 (1996)

    Google Scholar 

  117. H.D. Fan, Q.Y. Wang, M. KashifKhan, Appl. Mech. Mater. 275, 132 (2013)

    Google Scholar 

  118. N. Ahmed, A. Hartmaier, J. Mech. Phys. Solids 58, 2054 (2010)

    Google Scholar 

  119. L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, Y. Bréchet, Solid State Phenom. 23, 455 (1992)

    Google Scholar 

  120. G. Canova, Y. Bréchet, L. Kubin, B. Devincre, V. Pontikis, M. Condat, Solid State Phenom. 35, 101 (1993)

    Google Scholar 

  121. J. Hirth, M. Rhee, H. Zbib, J. Comput.-Aided Mater. 3, 164 (1996)

    Google Scholar 

  122. H. Zbib, M. Rhee, J. Hirth, Adv. Eng. Plast. Appl. 15, 5 (1996)

    Google Scholar 

  123. N.M. Ghoniem, R. Amodeo, Computer simulaltion of dislocation pattern formation. Trans. Tech. Publ. 20, 20 (1988)

    Google Scholar 

  124. G. Canova, Y. Brechet, L. Kubin, Model. Plast. Deform. Eng. Appl. 20, 20 (1992)

    Google Scholar 

  125. L.P. Kubin, J. Mater. Sci. Technol. 6, 137 (1993)

    Google Scholar 

  126. K. Schwarz, J. Tersoff, Appl. Phys. Lett. 69, 1220 (1996)

    Google Scholar 

  127. M. Rhee, H.M. Zbib, J. Hirth, H. Huang, T. De la Rubia, Model. Simul. Mater. Sci. 6, 467 (1998)

    Google Scholar 

  128. H.M. Zbib, T.D. de la Rubia, Int. J. Plast. 18, 1133 (2002)

    Google Scholar 

  129. E.Y. Gutmanas, E.M. Nadgornyi, Sov. Phys. Solid State 12, 733 (1970)

    Google Scholar 

  130. H.M. Zbib, M. Hiratani, M. Shehade, https://arxiv.org/cond-mat/0509531 (arXiv preprint) (2005)

  131. S.S. Quek, Z. Wu, Y.W. Zhang, D.J. Srolovitz, Acta Mater. 75, 92 (2014)

    Google Scholar 

  132. Y. Zhu, H. Wang, X. Zhu, Y. Xiang, Int. J. Plast. 60, 19 (2014)

    Google Scholar 

  133. Y.-N. Cui, Z.-L. Liu, Z. Zhuang, J. Mech. Phys. Solids 76, 127 (2015)

    MathSciNet  Google Scholar 

  134. A.M. Hussein, S.I. Rao, M.D. Uchic, D.M. Dimiduk, J.A. El-Awady, Acta Mater. 85, 180 (2015)

    Google Scholar 

  135. Y. Li, C. Robertson, M. Shukeir, L. Dupuy, Model. Simul. Mater. Sci. 26, 055009 (2018)

    Google Scholar 

  136. J. Chevy, M. Fivel, F. Louchet, P. Duval, Philos. Mag. Lett 92, 262 (2012)

    Google Scholar 

  137. C. Robertson, G.P. Reddy, C. Déprés, M. Fivel, Trans. Indian Inst. Metal. 69, 477 (2016)

    Google Scholar 

  138. F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, Science 318, 251 (2007)

    Google Scholar 

  139. J. El-Awady, H. Fan, A. Hussein, Multisc. Mater. Model. Nanomech. 245, 337 (2016)

    Google Scholar 

  140. K.M. Davoudi, J.J. Vlassak, https://arxiv.org/abs/14086609 (arXiv preprint) (2014).

  141. K. Davoudi, Scr. Mater. 131, 63 (2017)

    Google Scholar 

  142. S.S. Shishvan, L. Nicola, E. Van der Giessen, J. Appl. Phys. 107, 093529 (2010)

    Google Scholar 

  143. K. Danas, V.S. Deshpande, Model. Simul. Mater. Sci. Eng. 21, 20 (2013)

    Google Scholar 

  144. W.B. Lee, Y.P. Chen, Int. J. Plast. 26, 1527 (2010)

    Google Scholar 

  145. K.M. Davoudi, L. Nicola, J.J. Vlassak, J. Appl. Phys. 115, 1 (2014)

    Google Scholar 

  146. A. Roos, J.T. De Hosson, E. Van der Giessen, Comput. Mater. 20, 19 (2001)

    Google Scholar 

  147. R. Kumar, L. Nicola, E. Van der Giessen, Mat. Sci. Eng. A-Struct. 527, 7 (2009)

    Google Scholar 

  148. E. Van der Giessen, Discrete Dislocation Plasticity Analysis of Cracks and Fracture, Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics (Springer, Vienna, 2010), pp. 185–212

    MATH  Google Scholar 

  149. A. Vattré, B. Devincre, F. Feyel, R. Gatti, S. Groh, O. Jamond, A. Roos, J. Mech. Phys. Solids 63, 491 (2014)

    MathSciNet  Google Scholar 

  150. H.A. Askari, A continuum dislocation dynamics framework for plasticity of polycrystalline materials (2014)

  151. K.M. Davoudi, J.J. Vlassak, J. Appl. Phys. 123, 085302 (2018)

    Google Scholar 

  152. A.E. Mayer, E.N. Borodin, P.N. Mayer, Y.V. Vorobyov, D.A. Tikhonov, Evolution of perturbations of temperature and dislocation density at high-rateshear deformation of pure metals and alloys. In: ICF13, China, p. 16 (2013)

  153. C. de Sansal, B. Devincre, L.P. Kubin, Key Eng. Mater. 423, 25 (2010)

    Google Scholar 

  154. M.A. Zikry, M. Kao, Scr. Mater. 34, 1115 (1996)

    Google Scholar 

  155. M. Zikry, Comput. Struct. 50, 337 (1994)

    Google Scholar 

  156. R.J. Asaro, J.R. Rice, J. Mech. Phys. Solids 25, 309 (1977)

    Google Scholar 

  157. R. Jones, J. Zimmerman, G. Po, https://arxiv.org/abs/160804335 (arXiv preprint) (2016).

  158. F.F. Lavrentev, Y.A. Pokhil, Mater. Sci. Eng. 18, 261 (1975)

    Google Scholar 

  159. H. Salmenjoki, Predicting the behaviour of dislocation systems with machine learning methods, school of science, vol Master of Science in Technology, Aalto University (2017)

  160. Z.Y. Zhong, H.G. Brokmeier, W.M. Gan, E. Maawad, B. Schwebke, N. Schell, Mater. Charact 108, 124 (2015)

    Google Scholar 

  161. T. Hatem, M. Zikry, Philos. Mag. 89, 3087 (2009)

    Google Scholar 

  162. A.K. Head, Philos. Mag. 26, 65 (1972)

    Google Scholar 

  163. E.F. Rauch, J.J. Gracio, F. Barlat, Acta Mater. 55, 2939 (2007)

    Google Scholar 

  164. M. Peach, J.S. Koehler, Phys. Rev. B 80, 436 (1950)

    Google Scholar 

  165. K. W. Schwarz, Simulation of dislocations on the mesoscopic scale. I. Methods and examples (1999)

  166. A. Akef, J.H. Driver, Mater. Sci. Forum 113, 103 (1993)

    Google Scholar 

  167. F. Basson, J.H. Driver, Acta Mater. 48, 2101 (2000)

    Google Scholar 

  168. J.F. Humphreys, M. Ferry, Mater. Sci. Forum 217, 529 (1996)

    Google Scholar 

  169. P. Shanthraj, M.A. Zikry, Acta Metal. 59, 7695 (2011)

    Google Scholar 

  170. G.A. Malygin, Phys. Stat. Solidi 119, 423 (1990)

    Google Scholar 

  171. J. Hu, A.C.F. Cocks, Int. J. Solids. Struct. 78–79, 21 (2016)

    Google Scholar 

  172. M. Zaiser, S. Sandfeld, Model. Simul. Mater. Sci. 23, 065012 (2014)

    Google Scholar 

  173. S.A.H. Motaman, U. Prahl, J. Mech. Phys. Solids 122, 205 (2019)

    MathSciNet  Google Scholar 

  174. F.R. Nabarro, M.S. Duesbery, Dislocations in Solids (Elsevier, New York, 2002)

    Google Scholar 

  175. S. Xia, J. Belak, A. El-Azab, Model. Simul. Mater. Sci. 24, 075007 (2016)

    Google Scholar 

  176. P. Hähner, Acta Mater. 44, 2345 (1996)

    Google Scholar 

  177. B. Bakó, I. Groma, Phys. Rev. B 60, 122 (1999)

    Google Scholar 

  178. H.E. Evans, G. Knowles, Acta Metal. 25, 963 (1977)

    Google Scholar 

  179. A. Ardell, S. Lee, Acta Metal. 34, 2411 (1986)

    Google Scholar 

  180. O. Ajaja, J. Mater. Sci. 21, 3351 (1986)

    Google Scholar 

  181. L. Shi, D. Northwood, J. Mater. Sci. 28, 5963 (1993)

    Google Scholar 

  182. P. Lin, S. Lee, A. Ardell, Acta Metal. 37, 739 (1989)

    Google Scholar 

  183. A. Alankar, I.N. Mastorakos, D.P. Field, H.M. Zbib, J. Eng. Mater. T 134, 021018 (2012)

    Google Scholar 

  184. S. Groh, H. Zbib, J. Eng. Mater. T 131, 041209 (2009)

    Google Scholar 

  185. A. Ramasubramaniam, M. Ariza, M. Ortiz, J. Mech. Phys. Solids 55, 615 (2007)

    MathSciNet  Google Scholar 

  186. G. Gaucherin, F. Hofmann, J.P. Belnoue, A.M. Korsunsky, Proced. Eng. 1, 241 (2009)

    Google Scholar 

  187. V. Deshpande, A. Needleman, E. Van der Giessen, J. Mech. Phys. Solids 51, 2057 (2003)

    MathSciNet  Google Scholar 

  188. H.M. Zbib, M. Rhee, J.P. Hirth, Int. J. Mech. Sci. 40, 113 (1998)

    Google Scholar 

  189. A. Benzerga, Y. Bréchet, A. Needleman, E. Van der Giessen, Model. Simul. Mater. Sci. 12, 159 (2003)

    Google Scholar 

  190. M. Wollgarten, M. Beyss, K. Urban, H. Liebertz, U. Köster, Phys. Rev. Lett. 71, 20 (1993)

    Google Scholar 

  191. B. Devincre, L. Kubin, T. Hoc, Scr. Mater. 54, 741 (2006)

    Google Scholar 

  192. R.B. Sills, N. Bertin, A. Aghaei, W. Cai, Phys. Rev. Lett. 121, 085501 (2018)

    Google Scholar 

  193. L. Bortoloni, P. Cermelli, Z. Phys. 55, 105 (2004)

    Google Scholar 

  194. C.N. Ahlquist, W.D. Nix, Acta Metal. 19, 373 (1971)

    Google Scholar 

  195. D.V. Berkov, N.L. Gorn, Model. Simul. Mater. Sci. Eng. 26, 20 (2018)

    Google Scholar 

  196. M. Fivel, ed. By O. Cazacu, (2010) p. 17

  197. A.K. Head, W.W. Wood, Philos. Mag. Lett 27, 519 (1973)

    Google Scholar 

  198. L. Chung-Zi, S. Chang-Hsu, Mater. Sci. Eng. 49, 133 (1981)

    Google Scholar 

  199. R.M. Allen, L.S. Toth, A.L. Oppedal, H. El Kadiri, Materials (Basel) 11, 20 (2018)

    Google Scholar 

  200. C.H. Cáceres, P. Lukáč, A. Blake, Philos. Mag. 88(7), 991 (2008)

    Google Scholar 

  201. V. Parmar, K. Changela, B. Srinivas, M. ManiSankar, S. Mohanty, S.K. Panigrahi, K. Hariharan, D. Kalyanasundaram, Materials (Basel) 12, 20 (2019)

    Google Scholar 

  202. T. Richeton, F. Wagner, C. Chen, L.S. Toth, Materials (Basel) 11, 20 (2018)

    Google Scholar 

  203. A. El-Azab, Phys. Rev B 61, 11956 (2000)

    Google Scholar 

  204. R. Wu, D. Tüzes, P.D. Ispánovity, I. Groma, T. Hochrainer, M. Zaiser, Phys. Rev. B 98, 054110 (2018)

    Google Scholar 

  205. D.W. Suh, J.Y. Cho, K.H. Oh, H.C. Lee, ISIJ Int. 42, 564 (2002)

    Google Scholar 

  206. I.V. Alexandrov, R.G. Chembarisova, Rev. Adv. Mater. Sci. 16, 51 (2007)

    Google Scholar 

  207. S.C. Baik, Y. Estrin, H.S. Kim, R.J. Hellmig, Mater. Sci. Eng. A 351, 86 (2003)

    Google Scholar 

  208. I. Groma, F. Csikor, M. Zaiser, Acta Mater. 51, 1271 (2003)

    Google Scholar 

  209. C. Zhou, S.B. Biner, R. LeSar, Acta Mater. 58, 1565 (2010)

    Google Scholar 

  210. S.-W. Lee, S. Aubry, W.D. Nix, W. Cai, Dislocation junctions and jogs in a free-standing FCC thin film (2011)

  211. K. Schacht, A.H. Motaman, U. Prahl, W. Bleck, A unified dislocation density-dependent physical-based constitutive model for cold metal forming, in Conference Proceedings, Vol 1896, ed. by S. Sath (AIP Publishing, College Park, 2017), p. 160020

    Google Scholar 

  212. H. Yasin, H.M. Zbib, M.A. Khaleel, Mater. Sci. Eng. A 309, 294 (2001)

    Google Scholar 

  213. K.C. Le, Int. J. Plast. 76, 213 (2016)

    Google Scholar 

  214. S. Sandfeld, The Evolution of Dislocation Density in a Higher-Order Continuum Theory of Dislocation Plasticity (2010)

  215. H. Ghaffarian, A.K. Taheri, K. Kang, S. Ryu, Multisc. Sci. Eng. 1, 47 (2019)

    Google Scholar 

  216. R. Dronskowski, Metals 8(9), 705 (2018)

    Google Scholar 

  217. J. Amodeo, S. Merkel, C. Tromas, P. Carrez, S. Korte-Kerzel, P. Cordier, J. Chevalier, Crystals 8, 20 (2018)

    Google Scholar 

  218. S. Sandfeld, G. Po, Model. Simul. Mater. Sci. 23, 085003 (2015)

    Google Scholar 

  219. U.F. Kocks, Unified Constitutive Equations for Creep and Plasticity ed. By A. K. Miller (Springer, Dordrecht, 1987), pp. 1–88

  220. J. Klepaczko, C. Chiem, J. Mech. Phys. Solids 34, 29 (1986)

    Google Scholar 

  221. Y. Estrin, Unif. Constit. Laws Plast. Deform. 1, 69 (1996)

    Google Scholar 

  222. A.S. Krausz, K. Krausz, Unified Plastic Constitutive Laws of Deformation (Academic Press, San Diego, 1996)

    MATH  Google Scholar 

  223. Y. Bergström, Mater. Sci. Eng. 5, 193 (1970)

    Google Scholar 

  224. J. Hu, Z. Zhuang, F. Liu, X. Liu, Z. Liu, Comput. Mater. Sci. 159, 86 (2019)

    Google Scholar 

  225. S. Xia, A. El-Azab, Model. Simul. Mater. Sci. 23, 055009 (2015)

    Google Scholar 

  226. J. Bonneville, B. Escaig, Acta Metal. 27, 1477 (1979)

    Google Scholar 

  227. L. Brown, Philos. Mag. A 82, 1691 (2002)

    Google Scholar 

  228. W. Püschl, Prog. Mater. Sci 47, 415 (2002)

    Google Scholar 

  229. J. Deng, A. El-Azab, Philos. Mag. 90, 3651 (2010)

    Google Scholar 

  230. T. Mura, General Theory of Eigenstrains, Micromechanics of Defects in Solids (Springer, Dordrecht, 1982), pp. 1–62

    Google Scholar 

  231. J. Marian, S. Fitzgerald, G. Po, Handbook of materials modeling: applications. Curr. Emerg. Mater. 2, 1 (2018)

    Google Scholar 

  232. G. Po, N. Ghoniem, J. Mech. Phys. Solids 66, 103 (2014)

    MathSciNet  Google Scholar 

  233. W. Cai, A. Arsenlis, C.R. Weinberger, V.V. Bulatov, J. Mech. Phys. Solids 54, 561 (2006)

    MathSciNet  Google Scholar 

  234. G. Po, M. Lazar, N.C. Admal, N. Ghoniem, Int. J. Plast. 103, 1 (2018)

    Google Scholar 

  235. B. Devincre, R. Madec, G. Monnet, S. Queyreau, R. Gatti, L. Kubin, Mech. Nano-obj. 81, 20 (2011)

    Google Scholar 

  236. D. Weygand, L. Friedman, E. Van der Giessen, A. Needleman, Model. Simul. Mater. Sci. 10, 437 (2002)

    Google Scholar 

  237. A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, V.V. Bulatov, Model. Simul. Mater. Sci. 15, 553 (2007)

    Google Scholar 

  238. G. Po, M.S. Mohamed, T. Crosby, C. Erel, A. El-Azab, N. Ghoniem, Jom 66, 2108 (2014)

    Google Scholar 

  239. D. Luscher, Continuum dislocation-density based models for the dynamic shock response of single-crystal and polycrystalline materials. In: APS Shock Compression of Condensed Matter Meeting Abstracts (2017)

  240. F. Šiška, D. Weygand, S. Forest, P. Gumbsch, Comput. Mater. Sci. 45, 793 (2009)

    Google Scholar 

  241. S. Ziaei, M. Zikry, Modeling the effects of dislocation-density interaction, generation, and recovery on the behavior of HCP. Materials 20, 20 (2015)

    Google Scholar 

  242. K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 46, 1589 (1998)

    Google Scholar 

  243. A. Kobaissy, G. Ayoub, L. Toth, S. Mustapha, M. Shehadeh, Int. J. Plast. 114, 252 (2019)

    Google Scholar 

  244. J. Senger, D. Weygand, C. Motz, P. Gumbsch, O. Kraft, Acta Mater. 59, 2937 (2011)

    Google Scholar 

  245. C. Motz, D. Weygand, J. Senger, P. Gumbsch, Acta Mater. 57, 1744 (2009)

    Google Scholar 

  246. A.H. Delandar, S.M.H. Haghighat, P. Korzhavyi, R. Sandström, Int J. Mater. Res. 107, 988 (2016)

    Google Scholar 

  247. O. Kapetanou, V. Koutsos, E. Theotokoglou, D. Weygand, M. Zaiser, JMBM 24, 105 (2015)

    Google Scholar 

  248. Y. Xu, D. Balint, D. Dini, Model. Simul. Mater. Sci. 24, 045007 (2016)

    Google Scholar 

  249. C. Lemarchand, B. Devincre, L. Kubin, J. Mech. Phys. Solids 49, 1969 (2001)

    Google Scholar 

  250. J. Yin, D.M. Barnett, W. Cai, Model. Simul. Mater. Sci. 18, 045013 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors wish to exhibit their thanks to their coworker at University of Guilan, many of whom contributed to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Basti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadnejad, S., Basti, A. & Ansari, R. Analyses of Dislocation Effects on Plastic Deformation. Multiscale Sci. Eng. 2, 69–89 (2020). https://doi.org/10.1007/s42493-020-00037-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-020-00037-2

Keywords

Navigation