Skip to main content
Log in

A Time Integration Method for Phase-Field Modeling

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

A novel numerical time integration for solving phase-field problems is presented. This method includes the generalized single step single solve (GSSSS) family of algorithms, which can preserve second-order time accuracy as well as provide controllable numerical dissipation independently on each time variable. Furthermore, we demonstrate an enhancement of the time integration method that can reduce numerical oscillation of differential algebraic equation from phase-field model. The algebraic equation is evaluated at \(t_{n+1}\) instead of the general time level \(t_{n+W_{1}}\). The enhancement reduces the numerical oscillation due to the non-dissipative scheme. Two popular phase-field examples, the Cahn–Hilliard equations and simple phase-field-crystal equations, are used to demonstrate the capability of proposed time integration scheme. We conclude that this approach has a significant advantage over currently used algorithms, and provides a new avenue for robustness of time integration schemes for phase-field problems with a high-order term in free energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Andersson, Phase-field simulation of dendritic solidification. Unpublished PhD thesis. Royal Institute of Technology, Stockholm (2002)

  2. V.E. Badalassi, H.D. Ceniceros, S. Banerjee, Computation of multiphase systems with phase field models. J. Comput. Phys. 190(2), 371–397 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidification 1. Ann. Rev. Mater. Res. 32(1), 163–194 (2002)

    Article  Google Scholar 

  4. K.E. Brenan, S.L. Campbell, L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, vol. 14 (SIAM, Philadelphia, 1996)

    MATH  Google Scholar 

  5. L.-Q. Chen, Phase-field models for microstructure evolution. Ann. Rev. Mater. Res. 32(1), 113–140 (2002)

    Article  Google Scholar 

  6. G.J. Fix, in Free Boundary Problems: Theory and Applications, vol. II, ed. by A. Fasano, M. Primicerio (Piman, Boston, 1983), p. 580

  7. H. Gomez, T.J.R. Hughes, Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 230(13), 5310–5327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Gomez, X. Nogueira, An unconditionally energy-stable method for the phase field crystal equation. Comput. Methods Appl. Mech. Eng. 249, 52–61 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Gomez, A. Reali, G. Sangalli, Accurate, efficient, and (iso) geometrically flexible collocation methods for phase-field models. J. Comput. Phys. 262, 153–171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. M.E. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D Nonlinear Phenom. 92(3), 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.J. Hoitink, Application of the GSSSS family of algorithms to the natural index 3 differential-algebraic equations of multibody dynamics. PhD thesis, University of Minnesota (2011)

  12. J. Hua, P. Lin, C. Liu, Q. Wang, Energy law preserving \(c^0\) finite element schemes for phase field models in two-phase flow computations. J. Comput. Phys. 230(19), 7115–7131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. T.-H. Huang, T.-H. Huang, Y.-S. Lin, C.-H. Chang, P.-Y. Chen, S.-W. Chang, C.-S. Chen, Phase-field modeling of microstructural evolution by freeze-casting. Adv. Eng. Mater. 20(3), 1700343 (2018)

    Article  Google Scholar 

  14. T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Courier Corporation, Chelmsford, 2012)

    Google Scholar 

  15. A. Karma, D.A. Kessler, H. Levine, Phase-field model of mode III dynamic fracture. Phys. Rev. Lett. 87(4), 045501 (2001)

    Article  Google Scholar 

  16. R. Kobayashi, A numerical approach to three-dimensional dendritic solidification. Exp. Math. 3(1), 59–81 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.S. Langer, Models of pattern formation in first-order phase transitions. Dir. Condens. Matter Phys. 1, 165–186 (1986)

    Article  MathSciNet  Google Scholar 

  18. C. Liu, J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D Nonlinear Phenom. 179(3), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. S.U.B. Masuri, M. Sellier, X. Zhou, K.K. Tamma, Design of order-preserving algorithms for transient first-order systems with controllable numerical dissipation. Int. J. Numer. Methods Eng. 88(13), 1411–1448 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Negrut, R. Rampalli, G. Ottarsson, A. Sajdak, On the use of the HHT method in the context of index 3 differential algebraic equations of multibody dynamics. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2005), pp. 207–218

  21. L.R. Petzold, A description of dassl: a differential/algebraic system solver. Sci. Comput. 1, 65–68 (1982)

    Google Scholar 

  22. S. Praetorius, A. Voigt, Development and analysis of a block-preconditioner for the phase-field crystal equation. SIAM J. Sci. Comput. 37(3), B425–B451 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Provatas, K. Elder, Phase-field methods in materials science and engineering (Wiley, Hoboken, 2011)

    Google Scholar 

  24. N. Provatas, N. Goldenfeld, J. Dantzig, Adaptive mesh refinement computation of solidification microstructures using dynamic data structures. J. Computat. Phys. 148(1), 265–290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Shimada, Novel design and development of isochronous time integration architectures for ordinary differential equations and differential-algebraic equations: computational science and engineering applications. PhD thesis, University of Minnesota (2014)

  26. M. Shimada, A.J. Hoitink, K.K. Tamma, The fundamentals underlying the computations of acceleration for general dynamic applications: issues and noteworthy perspectives. CMES Comput. Model. Eng. Sci. 104(2), 133–158 (2015)

    Google Scholar 

  27. M. Shimada, S.U.B. Masuri, K.K. Tamma, A novel design of an isochronous integration [iintegration] framework for first/second order multidisciplinary transient systems. Int. J. Numer. Methods Eng. 102(3–4), 867–891 (2015)

    Article  MATH  Google Scholar 

  28. K.K. Tamma, M. Shimada, S.U.B. Masuri, X. Zhou, Computer-implemented method for performing simulation, June 25. US Patent App. 14/314,925 (2014)

  29. P. Vignal, L. Dalcin, D.L. Brown, N. Collier, V.M. Calo, An energy-stable convex splitting for the phase-field crystal equation. Comput. Struct. 158, 355–368 (2015)

    Article  Google Scholar 

  30. X. Zhou, K.K. Tamma, Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics. Int. J. Numer. Methods Eng. 59(5), 597–668 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the help regarding GSSSS time integration method from Dr. Shimada and Prof. Tamma at University of Minnesota, Twin Cities. We are grateful for the computational resources from National Center of High-performance Computing (NCHC). This work is supported by the Industrial Technology Research Institute (ITRI) at Hsinchu, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuin-Shan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, TH., Huang, TH., Lin, YS. et al. A Time Integration Method for Phase-Field Modeling. Multiscale Sci. Eng. 1, 56–69 (2019). https://doi.org/10.1007/s42493-018-00007-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-018-00007-9

Keywords

Navigation