Skip to main content

Molecular Dynamics Simulation Study on the Effect of the Loading Direction on the Deformation Mechanism of Pearlite


Molecular dynamics simulations were carried out to study the effect of the loading direction on the deformation behavior of the pearlite structure with a Bagaryatsky orientation relationship at the ferrite-cementite interface. We found excellent ductility in the ferrite and pearlite nanocomposites along the \(\left[ {\bar{1}10} \right]_{f} ||\left[ {001} \right]_{c}\) loading direction, while a brittle behavior was observed along the \(\left[ {111} \right]_{f} ||\left[ {100} \right]_{c}\) loading direction because of the reduced number of activated slip systems. Additionally, we reveal that the ductility is improved by either increasing the temperature or reducing the interlamellar spacing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    B. Arman, C. Brandl, S.N. Luo, T.C. Germann, A. Misra, T. Cagin, Plasticity in Cu(111)/Cu46Zr54 glass nanolaminates under uniaxial compression. J. Appl. Phys. 110, 043539-1–043539-5 (2011)

    Article  Google Scholar 

  2. 2.

    C.M. Bae, W.J. Nam, C.S. Lee, Effect of microstructural features on ductility in hypo-eutectoid steels. Scr. Mater. 41, 605–610 (1999)

    Article  Google Scholar 

  3. 3.

    Y.A. Bagaryatsky, Possible mechanism of martensite decomposition. Dokl. Akad. Nauk SSSR 73, 1161–1164 (1950)

    Google Scholar 

  4. 4.

    M. Dollar, I.M. Bernstein, A.W. Thompson, Influence of deformation substructure flow and fracture of fully pearlitic steel. Acta Metall. 36, 311–320 (1988)

    Article  Google Scholar 

  5. 5.

    J.D. Embury, R.M. Fisher, The structure and properties of drawn pearlite. Acta Metall. 14, 147–159 (1966)

    Article  Google Scholar 

  6. 6.

    D. Farkas, B. Hyde, Improving the ductility of nanocrystalline bcc metals. Nano Lett. 5, 2403–2407 (2005)

    Article  Google Scholar 

  7. 7.

    H. Ghaffarian, A.K. Taheri, K. Kang, S. Ryu, Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite. Scr. Mater. 95, 23–26 (2015)

    Article  Google Scholar 

  8. 8.

    H. Ghaffarian, A.K. Taheri, K. Kang, S. Ryu, Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: a molecular dynamics simulation. Curr. Appl. Phys. 16, 1015–1025 (2016)

    Article  Google Scholar 

  9. 9.

    W.F. Hosford, Mechanical behavior of materials, 2nd edn. (Cambridge University Press, New York, 2010)

    MATH  Google Scholar 

  10. 10.

    A. Inoue, T. Ogura, T. Masumoto, Deformation and fracture behaviors of cementite. Trans. JIM 17, 663–672 (1976)

    Article  Google Scholar 

  11. 11.

    A. Inoue, T. Ogura, T. Masumoto, Burgers vectors of dislocations in cementite crystal. Scr. Metall. 11, 1–5 (1977)

    Article  Google Scholar 

  12. 12.

    A. Inoue, T. Ogura, T. Masumoto, Microstructures of deformation and fracture of cementite in pearlitic carbon steels strained at various temperatures. Metall. Trans. A 8, 1689–1695 (1977)

    Article  Google Scholar 

  13. 13.

    V.I. Izotov, V.A. Pozdnyakov, E.V. Luk’yanenko, O.Y. Usanova, G.A. Filippov, Influence of the pearlite fineness on the mechanical properties, deformation behavior and fracture characteristics of carbon steel. Phys. Met. Metallogr. 105, 519–529 (2007)

    Article  Google Scholar 

  14. 14.

    J.B. Jeon, B.J. Lee, Y.W. Chang, Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron. Scr. Mater. 64, 494–497 (2011)

    Article  Google Scholar 

  15. 15.

    C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998)

    Article  Google Scholar 

  16. 16.

    J. Kim, K. Kang, S. Ryu, Characterization of the misfit dislocations at the ferrite/cementite interface in pearlitic steel: an atomistic simulation study. Int. J. Plasticity 83, 302–312 (2016)

    Article  Google Scholar 

  17. 17.

    G. Langford, Deformation of pearlite. Metall. Trans. 8A, 861–875 (1977)

    Article  Google Scholar 

  18. 18.

    L.S.I. Liyanage, S.G. Kim, J. Houze, S. Kim, M.A. Tschopp, M.I. Baskes, M.F. Horstemeyer, Structural, elastic, and thermal properties of cementite (Fe3C) calculated using a modified embedded atom method. Phys. Rev. B 89, 094102-1–09410211 (2014)

    Article  Google Scholar 

  19. 19.

    M.A. Meyers, E. Ashworth, A model for the effect of grain size on the yield stress of metals. Philos. Mag. A 46(5), 737–759 (1982)

    Article  Google Scholar 

  20. 20.

    O.P. Modi, N. Deshmukh, D.P. Mondal, A.K. Jha, A.H. Yegneswaran, H.K. Khaira, Effect of interlamellar spacing on the mechanical properties of 0.65% C steel. Mater. Charact. 46, 347–352 (2001)

    Article  Google Scholar 

  21. 21.

    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  22. 22.

    D.A. Porter, K.E. Easterling, G.D.W. Smith, Dynamic study of the tensile deformation and fracture of pearlite. Acta Metall. 26, 1405–1422 (1978)

    Article  Google Scholar 

  23. 23.

    J.G. Sevillano, Room temperature plastic deformation of pearlitic cementite. Mater. Sci. Eng. 21, 221–225 (1975)

    Article  Google Scholar 

  24. 24.

    F. Shimizu, S. Ogata, J. Li, Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. 48, 2923–2927 (2007)

    Article  Google Scholar 

  25. 25.

    A. Stukowski, V.V. Bulatov, A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. sci. Eng. 20, 085007-1–08500716 (2012)

    Google Scholar 

  26. 26.

    M. Tanaka, E. Tarleton, S.G. Roberts, The brittle-ductile transition in single-crystal iron. Acta Mater. 56, 5123–5129 (2008)

    Article  Google Scholar 

  27. 27.

    M. Umemoto, Y. Todaka, K. Tsuchiya, Mechanical properties of cementite and fabrication of artificial pearlite. Mater. Sci. Forum 426, 859–864 (2003)

    Article  Google Scholar 

  28. 28.

    N.Q. Vo, R.S. Averback, P. Bellon, A. Caro, Limits of hardness at the nanoscale: molecular dynamics simulations. Phys. Rev. B 78, 241402-1–241402-4 (2008)

    Article  Google Scholar 

  29. 29.

    N.Q. Vo, R.S. Averback, P. Bellon, A. Caro, Yield strength in nanocrystalline Cu during high strain rate deformation. Scr. Mater. 61, 76–79 (2009)

    Article  Google Scholar 

  30. 30.

    L. Wang, M. Umemoto, S. Hao, Microstructural evolution of lamellar cementite in eutectoid steels by cold rolling. Mater. Metall. 4, 155–158 (2005)

    Google Scholar 

  31. 31.

    X. Zhang, A. Godfrey, X. Huang, N. Hansen, Q. Liu, Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire. Acta Mater. 59, 3422–3430 (2011)

    Article  Google Scholar 

Download references


H.G. and A.K.T. acknowledge the Research Board of Sharif University of Technology, Tehran, Iran, and the Iran National Science Foundation for financial support of the project. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (2016R1C1B2016484 and 2016R1C1B2011979).

Author information



Corresponding authors

Correspondence to Keonwook Kang or Seunghwa Ryu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghaffarian, H., Taheri, A.K., Kang, K. et al. Molecular Dynamics Simulation Study on the Effect of the Loading Direction on the Deformation Mechanism of Pearlite. Multiscale Sci. Eng. 1, 47–55 (2019).

Download citation


  • Molecular dynamics simulation
  • Nanocomposite pearlite
  • Loading direction
  • Deformation mechanism