Skip to main content
Log in

Relay-Zone Technique for Numerical Boundary Treatments in Simulating Dark Solitons

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

To simulate dark solitons in the defocusing nonlinear Schrödinger equation, we introduce a relay-zone technique, by alternately using a Robin boundary condition to treat the nonzero far field, and a derivative boundary condition to match the dark soliton. Numerical tests and comparisons demonstrate the effectiveness of the proposed boundary treatment. Stability and interaction of dark solitons are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Abdullaev, S. Darmanyan, P. Khabibullaev, Optical Solitons (World Scientific, Singapore, 1991)

    Book  Google Scholar 

  2. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Thailand, 1981)

    Book  MATH  Google Scholar 

  3. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, London, 2007)

    MATH  Google Scholar 

  4. G. Akrivis, V.A. Dougalis, O. Karakashian, Solving the systems of equations arising in the discretization of some nonlinear PDE’s by implicit Runge–Kutta methods. RAIRO Modél. Math. Anal. Numér. 31, 251–287 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13, 115–124 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, A. Schädle, A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations (WIAS, Berlin, 2008)

    MATH  Google Scholar 

  7. X. Antoine, W. Bao, C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations. Comput. Phys. Commun. 184, 2621–2633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. X. Antoine, C. Besse, Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation. J. Comput. Phys. 188, 157–175 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. X. Antoine, C. Besse, S. Descombes, Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. SIAM J. Numer. Anal. 43, 2272–2293 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Arnold, Mathematical concepts of open quantum boundary conditions. Transport Theory Stat. Phys. 30, 561–584 (2001)

    Article  MATH  Google Scholar 

  11. G. Assanto, T.R. Marchant, A.A. Minzoni, N.F. Smyth, Reorientational versus kerr dark and gray solitary waves using modulation theory. Phys. Rev. E 84, 066602 (2011)

    Article  Google Scholar 

  12. W. Bao, Y. Cai, Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Bao, Numerical methods for the nonlinear Schrödinger equation with nonzero far-field conditions. Methods Appl. Anal. 11, 367–388 (2004)

    MathSciNet  MATH  Google Scholar 

  14. W. Bao, D. Jaksch, P.A. Markowich, Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation. J. Comput. Phys. 187, 318–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Bao, S. Jin, P.A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175, 487–524 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Bao, Q. Tang, Z. Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation. J. Comput. Phys. 235, 423–445 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. C.F. Barenghi, R.J. Donnelly, W. Vinen, Quantized Vortex Dynamics and Superfluid Turbulence, vol. 571 (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  18. C. Besse, B. Bidégaray, S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. R.M. Caplan, R. Carretero-González, A modulus-squared dirichlet boundary condition for time-dependent complex partial differential equations and its application to the nonlinear Schrodinger equation. SIAM J. Sci. Comput. 36, A1–A19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. A.V. Carpentier, J. Belmonte-Beitia, H. Michinel, M. Rodas-Verde, Laser tweezers for atomic solitons. J. Mod. Opt. 55, 2819–2829 (2008)

    Article  MATH  Google Scholar 

  21. R. Carretero-González, D. Frantzeskakis, P. Kevrekidis, Nonlinear waves in Bose–Einstein condensates: physical relevance and mathematical techniques. Nonlinearity 21, R139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, 2006)

    MATH  Google Scholar 

  23. A.S. Davydov, Solitons in molecular systems. Phys. Scr. 20, 387 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. A.B. De Monvel, A.S. Fokas, D. Shepelsky, Analysis of the global relation for the nonlinear Schrödinger equation on the half-line. Lett. Math. Phys. 65, 199–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Delfour, M. Fortin, G. Payr, Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. P.A.M. Dirac, The Principles of Quantum Mechanics, no. 27 (Oxford University Press, Oxford, 1981)

    Google Scholar 

  27. D. Frantzeskakis, Dark solitons in atomic Bose–Einstein condensates: from theory to experiments. J. Phys. A Math. Theor. 43, 213001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. E.P. Gross, Structure of a Quantized Vortex in Boson Systems, Il Nuovo Cimento (1955–1965), 20, pp. 454–477 (1961)

  29. M. Helal, Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics. Chaos Solitons Fract. 13, 1917–1929 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Hohage, F. Schmidt, L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition I: Theory. SIAM J. Math. Anal. 35, 183–210 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. Carr, Y. Castin, C. Salomon, Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002)

    Article  Google Scholar 

  32. Y.S. Kivshar, B. Luther-Davies, Dark optical solitons: physics and applications. Phys. Rep. 298, 81–197 (1998)

    Article  Google Scholar 

  33. Y.S. Kivshar, X. Yang, Perturbation-induced dynamics of dark solitons. Phys. Rev. E 49, 1657 (1994)

    Article  MathSciNet  Google Scholar 

  34. G. Lenz, P. Meystre, E. Wright, Nonlinear atom optics: general formalism and atomic solitons. Phys. Rev. A 50, 1681 (1994)

    Article  Google Scholar 

  35. P. Markowich, Applied Partial Differential Equations: A Visual Approach (Springer, Berlin, 2007)

    MATH  Google Scholar 

  36. B. Mayfield, Non-local Boundary Conditions for the Schrödinger Equation. PhD Thesis, University of Rhode Island, Providence, RI (1989)

  37. A.C. Newell, Solitons in Mathematics and Physics (SIAM, Thailand, 1985)

    Book  MATH  Google Scholar 

  38. A. Nicolin, A. Balaž, J. Sudharsan, R. Radha, Ground state of Bose–Einstein condensates with inhomogeneous scattering lengths. Rom. J. Phys. 59, 204 (2014)

    Google Scholar 

  39. G. Pang, L. Bian, S. Tang, ALmost EXact boundary condition for one-dimensional Schrödinger equations. Phys. Rev. E 86, 066709 (2012)

    Article  Google Scholar 

  40. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluidity, vol. 164 (Oxford University Press, Oxford, 2016)

    Book  MATH  Google Scholar 

  41. J.S. Russell, Report on Waves, in 14th Meeting of the British Association for the Advancement of Science, pp. 390–403 (1844)

  42. A. Schädle, D. Ruprecht, F. Schmidt, Transparent Boundary Conditions—The Pole Condition Approach, in Proceedings of Waves, pp. 301–303 (2007)

  43. F. Schmidt, P. Deuflhard, Discrete transparent boundary conditions for the numerical solution of Fresnel’s equation. Comput. Math. Appl. 29, 53–76 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. F. Schmidt, D. Yevick, Discrete transparent boundary conditions for Schrödinger-type equations. J. Comput. Phys. 134, 96–107 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Shukla, A. Mamun, Solitons, shocks and vortices in dusty plasmas. N. J. Phys. 5, 17 (2003)

    Article  Google Scholar 

  46. K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, Formation and propagation of matter-wave soliton trains. Nature 417, 150–153 (2002)

    Article  Google Scholar 

  47. S. Tang, W.K. Liu, E.G. Karpov, T.Y. Hou, Bridging atomistic/continuum scales in solids with moving dislocations. Chin. Phys. Lett. 24, 161 (2007)

    Article  Google Scholar 

  48. I.M. Uzunov, V.S. Gerdjikov, Self-frequency shift of dark solitons in optical fibers. Phys. Rev. A 47, 1582 (1993)

    Article  Google Scholar 

  49. A.-M. Wazwaz, New solitons and kink solutions for the Gardner equation. Commun. Nonlinear Sci. Numer. Simul. 12, 1395–1404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Weideman, B. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23, 485–507 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Yevick, T. Friese, F. Schmidt, A comparison of transparent boundary conditions for the Fresnel equation. J. Comput. Phys. 168, 433–444 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Zhang, Z. Xu, X. Wu, Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations. Phys. Rev. E 78, 026709 (2008)

    Article  Google Scholar 

  53. C. Zheng, Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. J. Comput. Phys. 215, 552–565 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. C. Zheng, A perfectly matched layer approach to the nonlinear Schrödinger wave equations. J. Comput. Phys. 227, 537–556 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. G.E. Zouraris, On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. ESAIM Math. Model. Numer. Anal 35, 389–405 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research is partially supported by NSFC under Contract no. 11521202 and China Postdoctoral Science Foundation Funded Project no. 2016M600902.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Bian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, L., Tang, S. Relay-Zone Technique for Numerical Boundary Treatments in Simulating Dark Solitons. Multiscale Sci. Eng. 1, 210–219 (2019). https://doi.org/10.1007/s42493-018-00002-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-018-00002-0

Keywords

Navigation