Skip to main content
Log in

Standard Points and Lines in Map Projections

Standardpunkte und -linien in Kartenprojektionen

  • Published:
KN - Journal of Cartography and Geographic Information Aims and scope Submit manuscript

A Correction to this article was published on 31 May 2024

This article has been updated

Abstract

In order to be able to read the information a map conveys, we must be familiar with the distribution and size of the inevitable distortions. Otherwise, our knowledge will be deficient or even wrong. The paper first defines the terms standard point and standard line. The standard point is the point where the inevitable distortions caused by mapping are equal to zero. This definition can be visually interpreted as a Tissot distortion ellipse that becomes a unit circle. After that, it is natural to say that the standard line is composed of standard points. A large number of examples show that the map projection does not have to have standard points at all, but that it can have one such point, two such points or a whole line of standard points. In the latter case, it can be parallels, meridians or lines approximately parallel to the image of the middle meridian, as is the case with the Gauss–Krüger or transverse Mercator projection. In this article, formulas are derived by which the reader can mathematically determine standard points or lines, if such exist. The derivation of new mathematical formulas in the paper can be helpful to cartographers who develop a mapping application and may need to select a map projection for their application. The map projection may not be common and therefore the details of the projection’s standard point(s) or line(s) are not well documented. These equations then could be used in writing the code that mathematically derives the location of a standard point(s) or line(s) for a map projection and reports that location to the developer or the end user.

Zusammenfassung

Um die Informationen einer Karte lesen zu können, müssen wir mit der Verteilung und dem Ausmaß der unvermeidlichen Verzerrungen vertraut sein. Andernfalls wird unser Wissen mangelhaft oder sogar falsch sein. Der Artikel definiert zunächst die Begriffe Standardpunkt und Standardlinie. Der Standardpunkt ist der Punkt, an dem die durch die Abbildung unvermeidlichen Verzerrungen gleich Null sind. Diese Definition kann visuell als eine Tissot-Verzerrungsellipse interpretiert werden, die zu einem Einheitskreis wird. Danach lässt sich ableiten, dass die Standardlinie aus Standardpunkten besteht. Eine Vielzahl von Beispielen zeigt, dass die Kartenprojektion überhaupt keine Standardpunkte haben muss, sondern einen solchen Punkt, zwei solcher Punkte oder eine ganze Linie von Standardpunkten haben kann. Im letzteren Fall kann es sich um Parallelen, Meridiane oder Linien handeln, die annähernd parallel zum Bild des Mittelmeridians sind, wie es bei der Gauss-Krüger oder transversalen Mercator-Projektion der Fall ist. In diesem Artikel werden Formeln abgeleitet, mit denen Standardpunkte oder -linien, sofern vorhanden, mathematisch bestimmt werden können. Die Ableitung neuer mathematischer Formeln in der Arbeit kann für Kartographen hilfreich sein, die eine Kartenanwendung entwickeln und möglicherweise eine Kartenprojektion für ihre Anwendung auswählen müssen. Die Kartenprojektion ist möglicherweise nicht üblich und daher sind die Details der Standardpunkte oder -linien der Projektion nicht gut dokumentiert. Diese Gleichungen könnten dann zum Schreiben des Codes verwendet werden, der mathematisch die Position eines Standardpunkts oder einer Standardlinie für eine Kartenprojektion ableitet und diese Position dem Entwickler oder Endbenutzer meldet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  • Borčić B (1976) Gauss-Krügerova projekcija meridijanskih zona, Sveučilište u Zagrebu, Geodetski fakultet, Zagreb

  • Bugayevskiy LM, Snyder JP (1995) Map projections—a reference manual. Taylor and Francis, London

    Google Scholar 

  • Euler L (1777) De repraesentatione superficiei sphaericae super plano, Acta Academiae Scientiarum Imperialis Petropolitanae. Translated into German in: Drei Abhandlungen uber Kartenprojection, Ostwald’s Klassiker der exakten Wissenschaften, no. 93, pp. 3–37, Leipzig, Wilhelm Engelmann, 1898

  • Kerkovits K (2024) Secant cylinders are evil—a case study on the standard lines of the universal transverse mercator and universal polar stereographic projections. ISPRS Int J Geo-Inform 2024(13):56. https://doi.org/10.3390/ijgi13020056

    Article  Google Scholar 

  • Lapaine M (2015) Multi standard-parallels azimuthal projections. In: Robbi Sluter C, Madureira Cruz CB, Leal de Menezes PM (eds) Cartography—maps connecting the world. Springer International Publishing, Series: Publications of the International Cartographic Association (ICA). https://doi.org/10.1007/978-3-319-17738-0_3 (Print ISBN 978-3-319-17737-3, Online ISBN 978-3-319-17738-0, pp 33–44)

    Chapter  Google Scholar 

  • Lapaine M (2023) On the definition of standard parallels in map projections. ISPRS Int J Geo-Inform 12(12):490. https://doi.org/10.3390/ijgi12120490

    Article  Google Scholar 

  • Pressley A (2001) Elementary differential geometry. Springer-Verlag

    Book  Google Scholar 

  • Snyder JP (1987) Map projections: a working manual, USGS Professional Paper 1395, Washington, DC

  • Snyder J P, Voxland PhM (1989) An album of map projections. US Geological Survey Professional Paper 1453

  • Winkel O (1921) Neue Gradnetzkombinationen: Petermanns Mitteilungen, v. 67, Dec., pp. 248–252. Translated into English as New Graticule Combinations, by Marcus Scherer, http://www.csiss.org/map-projections/microcam/newgrat.pdf (accessed 11. 11. 2020)

  • Winkel O (1928) Übersicht der Gradnetzkombinationen: Petermanns Mitteilungen, 74, 7–8, 201–204

  • Yan-Bin J (2020) Surface curves and fundamental forms (Com S 477/577 Notes) https://faculty.sites.iastate.edu › files › inline-files (accessed 11. 11. 2020)

Download references

Funding

The author did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miljenko Lapaine.

Ethics declarations

Conflict of Interest

The author has no competing interests to declare that are relevant to the content of this article.

Additional information

The original online version of this article was revised: Error in legend of figure 5 and in last section of text under heading 5.3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapaine, M. Standard Points and Lines in Map Projections. KN J. Cartogr. Geogr. Inf. (2024). https://doi.org/10.1007/s42489-024-00168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42489-024-00168-8

Keywords

Navigation