Skip to main content

Advertisement

Log in

Modelling the Impact of Changing Climate on Sediment Yield in a Data-Scarce High-Elevation Catchment in NW Himalayas

Modellierung der Auswirkungen des Klimawandels auf die Sedimentausbeute in einem datenarmen hochgelegenen Einzugsgebiet im NW-Himalaya

  • Published:
KN - Journal of Cartography and Geographic Information Aims and scope Submit manuscript

Abstract

This study's objectives include simulating and quantifying the sediment production from a data-scarce north-western Himalayan Lidder river basin using the SWAT model and providing baseline data and projections of future changes in the sediment yield in response to climate change. The model performed well for monthly streamflow simulation based on R2 and NSE values of 0.72 and 0.85, respectively, for calibration and R2 of 0.8 and NSE of 0.6 for validation. For simulation of future sediment yield, the future climate in the basin was projected using bias-adjusted RCM Cordex data with a geographical resolution of 0.44° under the medium (RCP4.5) and high (RCP8.5) emission scenarios. Assessment of climate change on sediment yield is determined for three time zones early (2010–2039), mid (20,140–2069) and late century (2070–2099). Climate change is having a significant influence on water resources. The observed average annual precipitation shows a decreasing trend from 1262 to 934 mm for the late century. Precipitation is expected to decrease by 11.98–14.59% for RCP 4.5 and 3.54–9.75% for RCP 8.5. The maximum and minimum temperature has shown an increasing trend under both RCPs with a higher increase in RCP 8.5. The maximum temperature is anticipated to increase by 1.69–3.97 °C for RCP 4.5 and 1.87–7.02 °C for RCP 8.5. Likewise, the minimum temperature is expected to increase by 1.79–3.87 °C for RCP 4.5 and 1.97–7.09 °C for RCP 8.5. The findings show that future sediment yield is anticipated to decline at all stations for RCP 4.5 and RCP 8.5, with a greater decline in RCP 4.5, demonstrating that precipitation significantly affects sediment yield generation in the basin.

Zusammenfassung

Zu den Zielen dieser Studie gehören die Simulation und Quantifizierung der

Sedimentproduktion in einem datenarmen Einzugsgebiet der Lidder im Nordwesten des Himalaya mit Hilfe des

SWAT-Modells sowie die Bereitstellung von Basisdaten und Projektionen künftiger Veränderungen des

Sedimentaufkommens als Reaktion auf den Klimawandel. Das Modell schnitt bei der Simulation des monatlichen

Abflusses mit R2- und NSE-Werten von 0,72 bzw. 0,85 für die Kalibrierung und R2 von 0,8 und NSE von 0,6 für die

Validierung gut ab. Für die Simulation der zukünftigen Sedimentausbeute wurde das zukünftige Klima im

Einzugsgebiet mit Hilfe von verzerrungsbereinigten RCM-Cordex-Daten mit einer geografischen Auflösung von

0,44° unter den mittleren (RCP 4,5) und hohen (RCP 8,5) Emissionsszenarien projiziert. Die Auswirkungen des

Klimawandels auf die Sedimentausbeute werden für die drei Zeitzonen Anfang (2010-2039), Mitte (2040-2069) und

Ende des Jahrhunderts (2070-2099) ermittelt. Der Klimawandel hat einen erheblichen Einfluss auf die

Wasserressourcen. Der beobachtete durchschnittliche Jahresniederschlag zeigt für das späte Jahrhundert einen

rückläufigen Trend von 1262 mm auf 934 mm. Es wird erwartet, dass die Niederschläge bei RCP 4.5 um 11,98-

14,59 % und bei RCP 8.5 um 3,54-9,75 % abnehmen werden. Die Maximal- und Minimaltemperaturen zeigen bei

beiden RCPs einen steigenden Trend, wobei der Anstieg bei RCP 8.5 höher ist. Die Höchsttemperatur wird

voraussichtlich um 1,69-3,97 °C für RCP 4,5 und um 1,87-7,02 °C für RCP 8,5 ansteigen. Ebenso wird erwartet,

dass die Minimaltemperatur um 1,79-3,87 °C für RCP 4,5 und 1,97-7,09 °C für RCP 8,5 ansteigen wird. Die

Ergebnisse zeigen, dass der künftige Sedimentertrag an allen Stationen für RCP 4,5 und RCP 8,5 zurückgehen

wird, wobei der Rückgang bei RCP 4,5 stärker ausfällt, was zeigt, dass die Niederschläge die Sedimenterzeugung

im Einzugsgebiet erheblich beeinflussen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Daily metrological data were obtained from Indian Meteorological Data (IMD), Pune, and measured data of stages and corresponding discharge for the gauging stations were obtained from the department of irrigation and flood control, Kashmir.

References

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large-area hydrologic modeling and assessment: Part I. Model development. J Am Water Resour Assoc 34(1):73–89

    Article  Google Scholar 

  • Barfield BJ, Hayes JC, Stevens E, Harp SL, Fogle A (2010 Sedimot III model. In Watershed Models 405–422

  • Beasley DB, Huggins LF, Monke A (1980) ANSWERS: a model for watershed planning. Transact ASAE 23(4):938–0944

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrol Sci J 24(1):43–69

  • Bhatti MT, Ashraf M, Anwar AA (2021) Soil erosion and sediment load management strategies for sustainable irrigation in arid regions. Sustainability 13(6):3547

    Article  Google Scholar 

  • Chinnasamy P, Sood A (2020) Estimation of sediment load for Himalayan Rivers: case study of Kaligandaki in Nepal. J Earth Syst Sci 129(1):1–18

    Article  Google Scholar 

  • Crawford NH, Burges SJ (2004) History of the Stanford watershed model. Water Resour Impact 6(2):3–6

    Google Scholar 

  • Ewen J, Parkin G, O’Connell PE (2000) SHETRAN: distributed river basin flow and transport modeling system. J Hydrol Eng 5(3):250–258

    Article  Google Scholar 

  • Flanagan DC, Ascough JC, Nearing MA, Laflen JM (2001) The water erosion prediction project (WEPP) model. In Landscape Erosion and Evolution Modeling, pp. 145–199

  • Gull S, Ma A, Dar A (2017) Prediction of streamflow and sediment yield of Lolab Watershed using SWAT model. Hydrol Curr Res 8(01):1–9

    Article  Google Scholar 

  • Gull S and Shah SR (2022) Hydrological modeling for streamflow and sediment yield simulation using the SWAT model in a forest-dominated watershed of north-eastern Himalayas of Kashmir Valley, India. J Hydroinform

  • Jain MK, Kothyari UC (2000) Estimation of soil erosion and sediment yield using GIS. Hydrol Sci J 45(5):771–786

  • Khadka D, Pathak D (2016) Climate change projection for the marsyangdi river basin, Nepal using statistical downscaling of GCM and its implications in geodisasters. Geoenviron Disast 3(1):1–15

    Article  Google Scholar 

  • Koirala P, Thakuri S, Joshi S, Chauhan R (2019) Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences 9(4):147

    Article  Google Scholar 

  • Machiwal D, Katara P, Mittal HK (2015) Estimation of soil erosion and identification of critical areas for soil conservation measures using RS and GIS-based Universal Soil Loss Equation. Agricult Res 3(4):12–15

    Google Scholar 

  • Malik MA, Dar AQ, Jain MK (2022) Modelling the influence of changing climate on the hydrology of high elevation catchments in NW Himalaya’s. Model Earth Syst Environ 1–10

  • Malunjkar VS, Shinde MG, Ghotekar SS, Atre AA (2015) Estimation of surface runoff using SWAT model. Int J Invent Eng Sci 4:2319–9598

    Google Scholar 

  • Meyer LD, Wischmeier WH (1969) Mathematical simulation of the process of soil erosion by water. Trans ASAE 12(6):754–0758

    Google Scholar 

  • Nearing MA, Wei H, Stone JJ, Pierson FB, Spaeth KE, Weltz MA, Flanagan DC, Hernandez M (2011) A rangeland hydrology and erosion model. Trans ASABE 54(3):901–908

    Article  Google Scholar 

  • Pandey A, Palmate SS (2019) Assessing future water–sediment interaction and critical area prioritization at sub-watershed level for sustainable management. Paddy Water Environ 17(3):373–382

    Article  Google Scholar 

  • Santos CA, Srinivasan VS, Suzuki K, Watanabe M (2003) Application of an optimization technique to a physically based erosion model. Hydrol Process 17(5):989–1003

    Article  Google Scholar 

  • Shafiq MU, Rasool R, Ahmed P, Dimri AP (2019) Temperature and precipitation trends in Kashmir Valley, northwestern Himalayas. Theoret Appl Climatol 135(1):293–304

    Article  Google Scholar 

  • Singh G, Ram B, Narain P, Bhushan LS, Abrol IP (1992) Soil erosion rates in India. J Soil Water Conserv 47(1):97–99

    Google Scholar 

  • Smith RE, Goodrich DC, Woolhiser DA, Unkrich CL (1995) KINEROS: a kinematic runoff and erosion model. Comp Models Watershed Hydrol 697–732

  • Sok T, Oeurng C, Ich I, Sauvage S, Miguel Sánchez-Pérez J (2020) Assessment of hydrology and sediment yield in the Mekong River Basin using SWAT model. Water 12:3503

    Article  Google Scholar 

  • Vikhel SD, Patil KA (2016) Assessment of soil erosion in Sukhana basin using USLE, GIS and remote sensing: a case study. Int J Civil Struct Env Infrastruct Eng Res Develop 6(4):71–78

    Google Scholar 

  • Walling DE (1988) Erosion and sediment yield research—some recent perspectives. J Hydrol 100(1–3):113–141

  • Williams JR (1975) Sediment yield prediction with universal equation using runoff energy factor. Proceedings of the sediment yield workshop, USDA Sedimentation Laboratory, Oxford

  • Young RA, Onstad CA, Bosch DD, Anderson WP (1989) AGNPS: a nonpoint-source pollution model for evaluating agricultural watersheds. J Soil Water Conserv 44(2):168–173

    Google Scholar 

  • Yuan L, Forshay KJ (2019) Using SWAT to evaluate streamflow and lake sediment loading in the Xinjiang River Basin with limited data. Water 12(1):39

    Article  Google Scholar 

Download references

Funding

This study was supported by MHRD, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Ayoub Malik.

Ethics declarations

Conflicts of Interest

No conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, M.A., Dar, A.Q. & Jain, M.K. Modelling the Impact of Changing Climate on Sediment Yield in a Data-Scarce High-Elevation Catchment in NW Himalayas. KN J. Cartogr. Geogr. Inf. 73, 67–75 (2023). https://doi.org/10.1007/s42489-022-00128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42489-022-00128-0

Keywords

Navigation