Skip to main content

Flood Modeling and Simulation Using HEC-HMS/HEC-GeoHMS and GIS Tools for River Sindh-NW Himalayas

Hochwassermodellierung und -simulation mit HEC-HMS/HEC-GeoHMS und GIS-Tools für den Fluss Sindh im NW-Himalaya


The Sindh River is one of the most important water sources in Jammu and Kashmir, India. It is the chief Jhelum tributary flowing in the Kashmir Valley, with a significant impact to the country’s economy, production of hydroelectric power and irrigation for farming. This study aims to access the applicability, competence and aptness of Hydrologic modeling system (HEC-HMS) for forecasting flood in the River Sindh of Kashmir Valley, India. HEC-GeoHMS which is an extension ArcView GIS tool was used for processing digital elevation model (DEM) by terrain pre-processing, and basin processing. Historical observed data (1992–2018), collected from irrigation and flood control department Kashmir, was used for calibration and validation of model. Four peak flow years were selected for calibration (1995 and 1998) and validation (2014 and 2017). The competence of the model was assessed by relating the observed data with the simulation data of the chosen flood occasions. Performance indicator values, i.e., (Peak flow) Percentage error in Peak Flow (PEPF), Model Efficiency (ME), and correlation coefficient (R2)were all within the acceptable range. The efficiency of the calibrated and validated training model is 0.94–0.95, and 0.96–0.98, respectively, which is acceptable. Also, a strong relation was found between observed and simulated values of peak discharge with R2 ranging between 0.95–0.98 for calibration and validation periods. The overall result shows interest in applying a hydrological model for flood risk assessment of Sindh River, where the peak discharge simulation results are consistent with historical observation data.


Der Fluss Sindh ist eine der wichtigsten Wasserquellen in Jammu und Kaschmir, Indien. Er ist der Hauptzufluss des Jhelum, der in das Kaschmirtal fließt. Er hat einen erheblichen Einfluss auf die Wirtschaft des Landes, die Erzeugung von Wasserkraft und die Bewässerung in der Landwirtschaft. Ziel dieser Studie ist es, die Anwendbarkeit, Kompetenz und Eignung des hydrologischen Modellierungssystems (HEC-HMS) für die Hochwasservorhersage des Flusses Sindh im Kaschmirtal, Indien, zu untersuchen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  • Abdul Rahman H (2009) Sustainable urban settlement and environmental challenges. Malaysian J Environ Manag 10(2):17–32

    Google Scholar 

  • Abhas KJ, Robin B, and Jessica L (2012). Cities and Flooding; A Guide to Integrated Urban Flood Risk Management for the 21st Century, electronic document

  • Adeloye AJ, Rustum R (2011) Lagos (Nigeria) flooding and influence of urban planning. Proc. Inst. Civ. Eng. Urban Des. Plan. 164(3):175–187

    Google Scholar 

  • Cahyono C, Adidarma WK (2019) Influence analysis of peak rate factor in the flood events’ calibration process using HEC–HMS. Model Earth Syst Environ.

    Article  Google Scholar 

  • Dawson RJ, Speight L, Hall JW, Djordjevic S, Savic D, Leandro J (2008) Attribution of flood risk in urban areas, J. Hydro inform. 10(4)

  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat. Clim. Change 3(9):816–821

    Article  Google Scholar 

  • Icyimpaye G, Abdelbaki C, Mourad KA (2021) Hydrological and hydraulic model for flood forecasting in Rwanda. Model Earth Syst Environ.

    Article  Google Scholar 

  • Kadaverugu A, Kadaverugu R, Chintala NR et al (2021) Flood vulnerability assessment of urban micro-watersheds using multi-criteria decision making and InVEST model: a case of Hyderabad City. Model. Earth Syst. Environ, India.

    Book  Google Scholar 

  • Liu L, Liu Y, Wang X, Yu D, Liu K, Huang H, Hu G (2015) Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata. Nat Hazards Earth Syst Sci 15:381–391

    Article  Google Scholar 

  • Lumbroso DM, Vinet F (2011) A comparison of the causes, effects and aftermaths of the coastal flooding of England in 1953 and France in 2010. Nat Hazards Earth Syst Sci 11(8):2321–2333

    Article  Google Scholar 

  • Malik M, Dar AQ, Jain MK (2021) Modelling streamflow using the SWAT model and multi-site calibration utilizing SUFI-2 of SWAT-CUP model for high altitude catchments NW Himalaya’s. Model Earth Syst Environ.

    Article  Google Scholar 

  • Mandal SP, Chakrabarty A (2016) Flash flood risk assessment for upper Teesta river basin: using the hydrological modeling system (HEC-HMS) software. Earth Syst. Environ, Model.

    Book  Google Scholar 

  • Parvaze S, Khan J, Kumar R, Allaie S (2021) Temporal flood forecasting for trans-boundary Jhelum River of Greater Himalayas. Theo Appl Climato. 144:493–506

    Article  Google Scholar 

  • Pathan AI, Agnihotri PG (2021) Application of new HEC-RAS version 5 for 1D hydrodynamic flood modeling with special reference through geospatial techniques: a case of River Purna at Navsari, Gujarat. India Model Earth Syst Environ.

    Article  Google Scholar 

  • Romali N, Yusop Z, Ahmad I (2018) Hydrological modelling using HEC-HMS for flood risk assessment of segamat Town, Malaysia. IOP Conference Series: Mater Sci and Engg.

    Article  Google Scholar 

  • Samu R, Kentel AS (2018) An Analysis of the flood management and mitigation measures in Zimbabwe for a sustainable future. Int. J. Disaster Risk Reduct. 31:1–10

    Article  Google Scholar 

  • Smith K, Hazards E (2013) Assessing Risk and Reducing Disaster, 6th edn. Routledge, London, p 309

    Book  Google Scholar 

  • Tamiru H, Wagari M (2021) Machine-learning and HEC-RAS integrated models for flood inundation mapping in Baro River Basin. Model. Earth Syst. Environ, Ethiopia.

    Book  Google Scholar 

  • U. S. Army Corps of Engineers (USACE) (2000) Hydrologic Modeling System: Technical Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Hydrologic Engineering CenterVan de Sande B, Lansen J, Hoyng C, (2012) Sensitivity of coastal flood risk assessment to digital elevation models. Water 4:568–579

    Google Scholar 

  • U. S. Army Corps of Engineers (USACE). 2000a. Geospatial modeling extension. HEC-GeoHMS, User’s Manual. Davis, CA: U.S. Army Corps of Engineers, Hydrologic Engineering Center

  • Vazhuthi HI, Kumar A (2020) Causes and Impacts of Urban Floods in Indian Cities: A Review. Int J Emerg Techno 11(4):140–147

    Google Scholar 

  • Wahl T, Jain S, Bender J, Meyers SD, Luther ME (2015) Increasing risk of compound flooding from storm surge and rainfall for major US cities. Clim. Change, Nat.

    Book  Google Scholar 

  • Yusop Z, Chan CH, Katimon A (2007) Runoff characteristics and application of HEC-HMS for modelling stormflow hydrograph in an oil palm catchment. Water Sci Technol 56(8):41–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mehlath Shah.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shah, M., Lone, M.A. Flood Modeling and Simulation Using HEC-HMS/HEC-GeoHMS and GIS Tools for River Sindh-NW Himalayas. KN J. Cartogr. Geogr. Inf. 72, 325–333 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Flood risk
  • HEC-GeoHMS
  • Hydrological model
  • Sindh River