Skip to main content

Automated 3D Urban Landscapes Visualization Using Open Data Sources on the Example of the City of Zagreb

Automatisierte 3D-Visualisierung urbaner Landschaften unter Verwendung offener Datenquellen am Beispiel der Stadt Zagreb

Abstract

Geographical location visualization is important to create virtual environments when performing simulations. This study uses publicly available data sources to create three-dimensional (3D) views of geographical locations, focusing on the city of Zagreb as a case study, and presents an automated solution that integrates data from four different sources to achieve this. Publicly available data sources (OpenStreetMap, Google Maps Elevation API, MapBox Static Images API) were used, and GIS Zrinjevac which is unique to Zagreb. Based on these sources, individual 3D objects were generated and displayed virtually in the form of an interactive 3D map. The proposed solution attempts to balance the differing levels of detail achieved using other techniques. The solution was implemented in the form of an application created using the Unity game engine. The results were analyzed to evaluate the solution’s validity and the created application’s performance. The analysis showed that the total execution time dependence is quadratically polynomial to the amount of retrieved data, and linear to the number of height map points. Examining the application’s update rate showed that the buildings and individual models used for polygon and point data had the greatest impact. Finally, possible improvements, alternative approaches, and advantages and disadvantages of the proposed solution are compared with other techniques used in this research area.

Zusammenfassung

Die Visualisierung geographischer Standorte ist wichtig, um virtuelle Umgebungen zur Durchführung von Simulationen zu erstellen. Diese Studie verwendet öffentlich verfügbare Datenquellen, um dreidimensionale (3D) Ansichten geographischer Standorte abzuleiten, wobei der Schwerpunkt auf der Stadt Zagreb als Fallstudie liegt. Die Studie liefert eine automatisierte Lösung, um Daten aus vier verschiedenen Quellen zu integrieren. Verwendet wurden öffentlich verfügbare Datenquellen (OpenStreetMap, Google Maps Elevation API, MapBox Static Images API) sowie GIS Zrinjevac, welches nur in Zagreb verfügbar ist. Auf der Grundlage dieser Quellen wurden individuelle 3D-Objekte generiert und in einer interaktiven 3D-Karte virtuell dargestellt. Die vorgeschlagene Lösung versucht, die unterschiedlichen Level of Details auszugleichen, die bei Verwendung anderer Techniken erreicht werden. Die Lösung wurde in Form einer Anwendung implementiert, die mit der Game-Engine Unity erstellt wurde. Um die Lösung im Ganzen fachgerecht zu bewerten sowie die Leistungsfähigkeit der entwickelten Anwendung zu überprüfen, wurden die Ergebnisse analysiert. Dabei zeigte sich, dass die Ausführungszeit im Ganzen quadratisch-polynomial abhängig ist von der Menge der abgerufenen Daten. Zudem ist sie linear abhängig zur Anzahl der Höhenkartenpunkte. Bei der Untersuchung der Aktualisierungsrate der Anwendung zeigte sich, dass die Gebäude sowie die einzelnen Modelle, die für Polygon- und Punktdaten verwendet wurden, den größten Einfluss hatten. Am Ende werden mögliche Verbesserungen, alternative Ansätze sowie die Vor- und Nachteile der vorgeschlagenen Lösung mit anderen in diesem Forschungssegment eingesetzten Techniken verglichen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Biljecki F, Stoter J, Ledoux H, Zlatanova S, Çöltekin A (2015) Applications of 3d city models: state of the art review. ISPRS Int J Geo Inf 4(4):2842–2889

    Article  Google Scholar 

  • Bostrom G, Fiocco M, Gonçalves JGM, Sequeira V (2006) Urban 3d modelling using terrestrial laser scanners. Int Arch Photogram Remote Sens 36:279–284

    Google Scholar 

  • Buyukdemircioglu M, Kocaman S, Isikdag U (2018) Semiautomatic 3d city model generation from large-format aerial images. ISPRS Int J Geo Inf 7(9):339

    Article  Google Scholar 

  • Dallmeyer J, Lattner A, Timm I (2013) GIS-based traffic simulation using OSM. Data Mining Geoinform Methods Appl. https://doi.org/10.1007/978-1-4614-7669-6_4

    Article  Google Scholar 

  • Fan H, Zipf A, Qing Fu, Neis P (2014) Quality assessment for building footprints data on openstreetmap. Int J Geogr Inf Sci 28(4):700–719

    Article  Google Scholar 

  • Flamanc D, Maillet G, Jibrini H (2003) 3d city models: an operational approach using aerial images and cadastral maps. Int Arch Photogram Remote Sensing Spatial Info Sci 34:53–58

    Google Scholar 

  • Girindran R, Boyd DS, Rosser J, Vijayan D, Long G, Robinson D (2020) On the reliable generation of 3d city models from open data. Urban Science 4(4):47

    Article  Google Scholar 

  • Girres J-F, Touya G (2010) Quality assessment of the French openstreetmap dataset. Trans GIS 14(4):435–459

    Article  Google Scholar 

  • Goetz M (2013) Towards generating highly detailed 3d citygml models from openstreetmap. Int J Geogr Inf Sci 27(5):845–865

    Article  Google Scholar 

  • Hadimlioglu IA, King SA (2019) City maker: reconstruction of cities from openstreetmap data for environmental visualization and simulations. ISPRS Int J Geo-Info 8(7):298

    Article  Google Scholar 

  • Isikdag U, Zlatanova S (2009) Interactive modelling of buildings in Google Earth: a 3D tool for Urban Planning, pp 52–70. https://doi.org/10.1007/978-3-642-04791-64.

  • Joling A (2017) Open data sources for 3d data visualisation-generating 3d worlds based on openstreetmaps data. In VISIGRAPP (3: IVAPP), pp 251–258

  • Jovanović D, Milovanov S, Ruskovski I, Govedarica M, Sladić D, Radulović A, Pajić V (2020) Building virtual 3d city model for smart cities applications: a case study on campus area of the university of novi sad. ISPRS Int J GeoInform 9(8):476

    Article  Google Scholar 

  • Kocaman LS, Zhang AG, Poli D (2006) 3d city modeling from high-resolution satellite images. Int Arch Photogram Remote Sens Spat Info Sci. https://doi.org/10.3929/ethz-b-000158058

    Article  Google Scholar 

  • Madubedube A, Coetzee S, Rautenbach V (2021) A contributor-focused intrinsic quality assessment of openstreetmap in mozambique using unsupervised machine learning. ISPRS Int J Geo-Info 10(3):156

    Article  Google Scholar 

  • Nuhn E, Reinhardt W, Haske B (2012) Generation of landmarks from 3D city models and OSM data. Proceedings of the AGILE’2012 International Conference on Geographic Information Science, Avignon, France

  • Ohori K, Biljecki F, Kumar K, Ledoux H, Stoter J (2018) Modeling Cities and Landscapes in 3D with CityGML, pp 199–215. ISBN 978-3-319-92861-6. https://doi.org/10.1007/978-3-319-92862-311

  • Ohori KA, Ledoux H, Biljecki F, Stoter J (2015) Modeling a 3d city model and its levels of detail as a true 4d model. ISPRS Int J Geo-Info 4(3):1055–1075

    Article  Google Scholar 

  • Over M et al (2010) Generating web-based 3D city models from OpenStreetMap: the current situation in Germany. Comput Environ Urban Syst 34(6):496–507

    Article  Google Scholar 

  • Ross L (2011) Virtual 3d city models in urban land management-technologies and applications. Dissertation, Technische Universität Berlin, Fakultät VI - Planen Bauen Umwelt

  • Sharkawi K, Ujang U, Rahman A (2008) Developing 3D navigation system using 3D game engine. In: Advances Towards 3D GIS, pp 131–140. Penerbit UTM

  • Shiode N (2000) 3d urban models: recent developments in the digital modelling of urban environments in three-dimensions. GeoJournal 52(3):263–269

    Article  Google Scholar 

  • Singh SP, Jain K, Mandla VR (2013a) Virtual 3d city modeling: techniques and applications. ISPRS-Int Arch Photogram Remote Sens Spat Info Sci XL:73–91

    Article  Google Scholar 

  • Singh SP, Jain K, Mandla VR (2013b) Virtual 3d campus modeling by using close range photogrammetry. Am J Civil Eng Architecture 1(6):200–205

    Article  Google Scholar 

  • Singh SP, Jain K, Mandla VR (2014) A new approach towards image based virtual 3d city modeling by using close range photogrammetry. ISPRS Ann Photogram Remote Sens Spat Info Sci 2(5):329–337

    Article  Google Scholar 

  • Singla JG, Padia K (2021) A novel approach for generation and visualization of virtual 3D city model using open source libraries. J Indian Soc Remote Sens 49:1239–1244. https://doi.org/10.1007/s12524-020-01191-8

    Article  Google Scholar 

  • Stančić B, Cetl V, Mađer M (2014) Ispitivanje potencijala dobrovoljnih geoinfomacija na primjeru openstreetmapa u hrvatskoj. Kartografija i Geoinformacije 13(22):48–69

    Google Scholar 

  • Verma V, Kumar R, Hsu S (2006) 3d building detection and modeling from aerial lidar data. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol 2, pp 2213–2220. IEEE

  • Wang Z, Zipf A (2017) Using openstreetmap data to generate building models with their inner structures for 3d maps. ISPRS Ann Photogram Remote Sens Spat Info Sci 4:411–416

    Article  Google Scholar 

  • Yang B (2016) Gis based 3-d landscape visualization for promoting citizen’s awareness of coastal hazard scenarios in flood prone tourism towns. Appl Geogr 76:85–97

    Article  Google Scholar 

  • Yang B, Lee J (2019) Improving accuracy of automated 3-d building models for smart cities. Int J Dig Earth 12(2):209–227

    Article  Google Scholar 

  • Zhou Q-Y, Neumann U (2008) Fast and extensible building modelling from airborne lidar data. In Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information systems, pp 1–8

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adrian Komadina or Željka Mihajlović.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Komadina, A., Mihajlović, Ž. Automated 3D Urban Landscapes Visualization Using Open Data Sources on the Example of the City of Zagreb. KN J. Cartogr. Geogr. Inf. 72, 139–152 (2022). https://doi.org/10.1007/s42489-022-00102-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42489-022-00102-w

Keywords

  • Data visualization
  • Cartographic data
  • Virtual environment
  • OpenStreetMap
  • GIS Zrinjevac
  • Google maps elevation API