Abstract
Pectinolytic enzymes produced by a large variety of organisms are well characterized concerning their physiological and pathological activities during modification or degradation of the complex plant cell wall. The exponential growth in structural information of these enzymes over past decades has rendered insights into functionally relevant residues, active sites and molecular basis of the enzymatic mechanism, which in turn, endorses its usage in industrial applications. This review highlights a comprehensive and up to date summary of structural information and the structure–function correlation of pectinolytic enzymes.
Similar content being viewed by others
References
Abbott DW, Boraston AB (2007a) A family 2 pectate lyase displays a rare fold and transition metal-assisted β-elimination. J Biol Chem 282:35328–35336
Abbott DW, Boraston AB (2007b) The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase. J Mol Biol 368:1215–1222
Abbott DW, Gilbert HJ, Boraston AB (2010) The active site of oligogalacturonate lyase provides unique insights into cytoplasmic oligogalacturonate β-elimination. J Biol Chem 285:39029–39038
Abbott DW, Thomas D, Pluvinage B, Boraston AB (2013) An ancestral member of the polysaccharide lyase family 2 displays endolytic activity and magnesium dependence. Appl Biochem Biotechnol 171:1911–1923
Ahlawat S, Mandhan R, Dhiman SS, Kumar R, Sharma J (2008) Potential application of alkaline pectinase from Bacillus subtilis SS in pulp and paper industry. Appl Biochem Biotechnol 149:287–293
Akita M, Suzuki A, Kobayashi T, Ito S, Yamane T (2001) The first structure of pectate lyase belonging to polysaccharide lyase family 3. Acta Crystallogr D Biol Crystallogr 57:1786–1792
Alahuhta M, Chandrayan P, Kataeva I, Adams MW, Himmel ME, Lunin VV (2011) A 1.5 Å resolution X-ray structure of the catalytic module of Caldicellulosiruptor bescii family 3 pectate lyase. Acta Crystallogr F Struct Biol Cryst Commun 67(12):1498–1500
Alahuhta M et al (2015) The catalytic mechanism and unique low pH optimum of Caldicellulosiruptor bescii family 3 pectate lyase. Acta Crystallogr D Biol Crystallogr 71:1946–1954
Amin F, Bhatti HN, Bilal M (2019) Recent advances in the production strategies of microbial pectinases—a review. Int J Biol Macromol 122:1017–1026
Armand S et al (2000) The active site topology of Aspergillus niger endopolygalacturonase II as studied by site-directed mutagenesis. J Biol Chem 275:691–696
Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–779
Azadi P, O’Neill MA, Bergmann C, Darvill AG, Albersheim P (1995) The backbone of the pectic polysaccharide rhamnogalacturonan I is cleaved by an endohydrolase and an endolyase. Glycobiology 5:783–789
Bolvig PU, Pauly M, Orfila C, Scheller HV, Schnorr K (2003) Sequence analysis and characterisation of a novel pectin acetyl esterase from Bacillus subtilis. In: Voragen F, Schols H, Visser R (eds) Advances in pectin and pectinase research. Springer, Berlin, pp 315–330
Bonivento D et al (2008) Crystal structure of the endopolygalacturonase from the phytopathogenic fungus Colletotrichum lupini and its interaction with polygalacturonase-inhibiting proteins. Proteins Struct Funct Bioinform 70:294–299
Bonnin E, Garnier C, Ralet M-C (2014) Pectin-modifying enzymes and pectin-derived materials: applications and impacts. Appl Microbiol Biotechnol 98:519–532
Boraston AB, Abbott D (2012) Structure of a pectin methylesterase from Yersinia enterocolitica. Acta Crystallogr F Struct Biol Cryst Commun 68:129–133
Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346
Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. In: Carpita NC, Campbell M, Tierney M (eds) Plant cell walls. Springer, Berlin, pp 311–340
Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900
Charnock SJ, Brown IE, Turkenburg JP, Black GW, Davies GJ (2002) Convergent evolution sheds light on the anti-β-elimination mechanism common to family 1 and 10 polysaccharide lyases. Proc Natl Acad Sci 99:12067–12072
Cho SW, Lee S, Shin W (2001) The X-ray structure of Aspergillus aculeatus polygalacturonase and a modeled structure of the polygalacturonase-octagalacturonate complex. J Mol Biol 311:863–878
Choi D-H, Kim Y-D, Chung I-S, Lee S-H, Kang S-M, Kwon T-J, Han K-S (2000) Gene cloning and expression of cephalosporin-C deacetylase from Bacillus sp. KCCM10143. J Microbiol Biotechnol 10:221–226
Creze C, Castang S, Derivery E, Haser R, Hugouvieux-Cotte-Pattat N, Shevchik VE, Gouet P (2008) The crystal structure of pectate lyase peli from soft rot pathogen Erwinia chrysanthemi in complex with its substrate. J Biol Chem 283:18260–18268
Dehdashti SJ, Doan CN, Chao KL, Yoder MD (2003) Effect of mutations in the T1. 5 loop of pectate lyase A from Erwinia chrysanthemi EC16. Acta Crystallogr D Biol Crystallogr 59:1339–1342
Derbyshire P, McCann MC, Roberts K (2007) Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol 7:31
Di Matteo A et al (2005) Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17:849–858
Federici L et al (2001) Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc Natl Acad Sci 98:13425–13430
Fries M, Ihrig J, Brocklehurst K, Shevchik VE, Pickersgill RW (2007) Molecular basis of the activity of the phytopathogen pectin methylesterase. EMBO J 26:3879–3887
Garg G, Singh A, Kaur A, Singh R, Kaur J, Mahajan R (2016) Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech 6:47
Garron M-L, Cygler M (2010) Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 20:1547–1573
Gou J-Y, Miller LM, Hou G, Yu X-H, Chen X-Y, Liu C-J (2012) Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell 24:50–65
Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903–919
Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectin. Plant Physiol 153:384–395
Hatanaka C, Ozawa I (1971) Enzymic degradation of pectic acid XIII. A new exopolygalacturonase producing digalacturonic acid from pectic acid. Berichte des Ohara Instituts für landwirtschaftliche Biologie, Okayama Universität 15:47–60
Held MA, Jiang N, Basu D, Showalter AM, Faik A (2015) Plant cell wall polysaccharides: structure and biosynthesis. In: Ramawat KG, Mérillon JM (eds) Polysaccharides. Springer, Switzerland, pp 3–54
Herron SR, Benen JA, Scavetta RD, Visser J, Jurnak F (2000) Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc Natl Acad Sci 97:8762–8769
Herron SR, Scavetta RD, Garrett M, Legner M, Jurnak F (2003) Characterization and implications of Ca2+ binding to pectate lyase C. J Biol Chem 278:12271–12277
Ho YS et al (1997) Brain acetylhydrolase that inactivates platelet-activating factor is a G-protein-like trimer. Nature 385:89–93
Jacob N (2009) Pectinolytic enzymes. In: Singh nee’ Nigam P, Pandey A (eds) Biotechnology for agro-industrial residues utilisation. Springer, Berlin, pp 383–396
Jenkins J, Mayans O, Smith D, Worboys K, Pickersgill RW (2001) Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a novel esterase active site. J Mol Biol 305:951–960
Jenkins J, Shevchik VE, Hugouvieux-Cotte-Pattat N, Pickersgill RW (2004) The crystal structure of pectate lyase Pel9A from Erwinia chrysanthemi. J Biol Chem 279:9139–9145
Jensen MH, Otten H, Christensen U, Borchert TV, Christensen LL, Larsen S, Leggio LL (2010) Structural and biochemical studies elucidate the mechanism of rhamnogalacturonan lyase from Aspergillus aculeatus. J Mol Biol 404:100–111
Johansson K, El-Ahmad M, Friemann R, Jörnvall H, Markovič O, Eklund H (2002) Crystal structure of plant pectin methylesterase. FEBS Lett 514:243–249
Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME (2010) Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 345:2583–2595
Kashyap D, Vohra P, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77:215–227
Kent LM, Loo TS, Melton LD, Mercadante D, Williams MA, Jameson GB (2016) Structure and properties of a non-processive, salt-requiring, and acidophilic pectin methylesterase from Aspergillus niger provide insights into the key determinants of processivity control. J Biol Chem 291:1289–1306
Kester H, Someren MA, Müller Y, Visser J (1996) Primary structure and characterization of an exopolygalacturonase from Aspergillus tubingensis. Eur J Biochem 240:738–746
Khan M, Nakkeeran E, Umesh-Kumar S (2013) Potential application of pectinase in developing functional foods. Annu Rev Food Sci Technol 4:21–34
Kunishige Y, Iwai M, Nakazawa M, Ueda M, Tada T, Nishimura S, Sakamoto T (2018) Crystal structure of exo-rhamnogalacturonan lyase from Penicillium chrysogenum as a member of polysaccharide lyase family 26. FEBS Lett 592:1378–1388
Langkilde A, Kristensen SM, Lo Leggio L, Mølgaard A, Jensen JH, Houk AR, Navarro Poulsen J-C, Kauppinen S, Larsen S (2008) Short strong hydrogenbonds in proteins: a case study of rhamnogalacturonan acetylesterase. Acta Crystallogr D Biol Crystallogr 64:851–863
Le Goff A, Renard C, Bonnin E, Thibault J-F (2001) Extraction, purification and chemical characterisation of xylogalacturonans from pea hulls. Carbohydr Polym 45:325–334
Lee W, Yusof S, Hamid NSA, Baharin BS (2006) Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). J Food Eng 73:55–63
Leroux C et al (2015) Pectin methylesterase 48 is involved in Arabidopsis pollen grain germination. Plant Physiol 167:367–380
Lietzke SE, Yoder MD, Keen NT, Jurnak F (1994) The three-dimensional structure of pectate lyase E, a plant virulence factor from Erwinia chrysanthemi. Plant Physiol 106:849–862
Lietzke SE, Scavetta RD, Yoder MD, Jurnak F (1996) The refined three-dimensional structure of pectate lyase E from Erwinia chrysanthemi at 2.2 A resolution. Plant Physiol 111:73–92
Lionetti V, Cervone F, Bellincampi D (2012) Methyl esterification of pectin plays a role during plant–pathogen interactions and affects plant resistance to diseases. J Plant Physiol 169:1623–1630
Liu C-Q et al (2017) Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit. PLoS ONE 12:e0173277
Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B (2010) A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432:437–444
Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495
Markovič O, Janeček Š (2004) Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydr Res 339:2281–2295
Martens-Uzunova ES et al (2006) A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation. Biochem J 400:43–52
Martínez-Martínez I, Navarro-Fernández J, Daniel Lozada-Ramírez J, García-Carmona F, Sánchez-Ferrer Á (2008) YesT: a new rhamnogalacturonan acetyl esterase from Bacillus subtilis. Proteins Struct Funct Bioinform 71:379–388
Mayans O et al (1997) Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. Structure 5:677–689
McDonough MA, Kadirvelraj R, Harris P, Poulsen J-CN, Larsen S (2004) Rhamnogalacturonan lyase reveals a unique three-domain modular structure for polysaccharide lyase family 4. FEBS Lett 565:188–194
McLean R, Hobbs JK, Suits MD, Tuomivaara ST, Jones DR, Boraston AB, Abbott DW (2015) Functional analyses of resurrected and contemporary enzymes illuminate an evolutionary path for the emergence of exolysis in polysaccharide lyase family 2. J Biol Chem 290:21231–21243
Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277
Mohnen D, Bar-Peled M, Somerville C (2008) Cell wall polysaccharide synthesis. In: Himmel M (ed) Biomass recalcitrance: deconstructing the plant cell wall bioenergy. Blackwell Publishing, Oxford, pp 94–187
Mølgaard A, Larsen S (2002) A branched N-linked glycan at atomic resolution in the 1.12 Å structure of rhamnogalacturonan acetylesterase. Acta Crystallogr D Biol Crystallogr 58:111–119
Mølgaard A, Kauppinen S, Larsen S (2000) Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 8:373–383
Munoz-Munoz J, Cartmell A, Terrapon N, Baslé A, Henrissat B, Gilbert HJ (2017) An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. J Biol Chem M117:794578
Murthy PS, Naidu MM (2011) Improvement of robusta coffee fermentation with microbial enzymes. Eur J Appl Sci 3:130–139
Mutter M, Beldman G, Schols HA, Voragen AGJ (1994) Rhamnogalacturonan α-l-rhamnopyranohydrolase (A novel enzyme specific for the terminal nonreducing rhamnosyl unit in rhamnogalacturonan regions of pectin). Plant Physiol 106:241–250
Mutter M, Beldman G, Pitson SM, Schols HA, Voragen AG (1998) Rhamnogalacturonan α-d-galactopyranosyluronohydrolase: an enzyme that specifically removes the terminal nonreducing galacturonosyl residue in rhamnogalacturonan regions of pectin. Plant Physiol 117:153–163
Najafian L, Ghodsvali A, Khodaparast MH, Diosady L (2009) Aqueous extraction of virgin olive oil using industrial enzymes. Food Res Int 42:171–175
Nakamura A, Furuta H, Maeda H, Takao T, Nagamatsu Y (2002) Analysis of the molecular construction of xylogalacturonan isolated from soluble soybean polysaccharides. Biosci Biotechnol Biochem 66:1155–1158
Navarro-Fernández J, Martínez-Martínez I, Montoro-García S, García-Carmona F, Takami H, Sánchez-Ferrer Á (2008) Characterization of a new rhamnogalacturonan acetyl esterase from Bacillus halodurans C-125 with a new putative carbohydrate binding domain. J Bacteriol 190:1375–1382
Normand J, Ralet M-C, Thibault J-F, Rogniaux H, Delavault P, Bonnin E (2010) Purification, characterization, and mode of action of a rhamnogalacturonan hydrolase from Irpex lacteus, tolerant to an acetylated substrate. Appl Microbiol Biotechnol 86:577–588
Novoa de Armas H, Verboven C, De Ranter C, Desair J, Vande Broek A, Vanderleyden J, Rabijns A (2004) Azospirillum irakense pectate lyase displays a toroidal fold. Acta Crystallogr D Biol Crystallogr 60:999–1007
O’Neill MA, York WS (2003) The composition and structure of plant primary cell walls. In: Rose JKC (ed) The plant cell wall. Blackwell Publishing, Oxford, pp 1–54
Ochiai A, Itoh T, Maruyama Y, Kawamata A, Mikami B, Hashimoto W, Murata K (2007) A novel structural fold in polysaccharide lyases Bacillus subtilis family 11 rhamnogalacturonan lyase YesW with an eight-bladed β-propeller. J Biol Chem 282:37134–37145
Ochiai A, Itoh T, Mikami B, Hashimoto W, Murata K (2009) Structural determinants responsible for substrate recognition and mode of action in family 11 polysaccharide lyases. J Biol Chem 284:10181–10189
Pagès S, Heijne WH, Kester HC, Visser J, Benen JA (2000) Subsite Mapping of Aspergillus niger endopolygalacturonase II by site-directed mutagenesis. J Biol Chem 275:29348–29353
Paniagua C et al (2017) Structural changes in cell wall pectins during strawberry fruit development. Plant Physio Biochem 118:55–63
Pelletier S et al (2010) A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol 188:726–739
Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277
Petersen TN, Kauppinen S, Larsen S (1997) The crystal structure of rhamnogalacturonase A from Aspergillus aculeatus: a right-handed parallel β helix. Structure 5:533–544
Pickersgill R, Jenkins J, Harris G, Nasser W, Robert-Baudouy J (1994) The structure of Bacillus subtilis pectate lyase in complex with calcium. Nat Struct Mol Biol 1:717–723
Pickersgill R, Smith D, Worboys K, Jenkins J (1998) Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora. J Biol Chem 273:24660–24664
Pijning T, van Pouderoyen G, Kluskens L, van der Oost J, Dijkstra BW (2009) The crystal structure of a hyperthermoactive exopolygalacturonase from Thermotoga maritima reveals a unique tetramer. FEBS Lett 583:3665–3670
Rosenthal PB et al (1998) Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature 396:92
Rozeboom HJ, Beldman G, Schols HA, Dijkstra BW (2013) Crystal structure of endo-xylogalacturonan hydrolase from Aspergillus tubingensis. FEBS J 280:6061–6069
Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78:614–649
Sandri IG, Fontana RC, Barfknecht DM, da Silveira MM (2011) Clarification of fruit juices by fungal pectinases. LWT Food Sci Technol 44:2217–2222
Scavetta RD et al (1999) Structure of a plant cell wall fragment complexed to pectate lyase C. Plant Cell 11:1081–1092
Seyedarabi A, To TT, Ali S, Hussain S, Fries M, Madsen R, Clausen MH, Teixteira S, Brocklehurst K, Pickersgill RW (2009) Structural insights intosubstrate specificity and the anti β-elimination mechanism of pectate lyase. Biochemistry 49:539–546
Shallom D et al (2005) Biochemical characterization and identification of the catalytic residues of a family 43 β-d-xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 44:387–397
Sharma N, Rathore M, Sharma M (2013) Microbial pectinase: sources, characterization and applications. Rev Environ Sci Biotechnol 12:45–60
Shimizu T, Nakatsu T, Miyairi K, Okuno T, Kato H (2002) Active-site architecture of endopolygalacturonase I from Stereum purpureum revealed by crystal structures in native and ligand-bound forms at atomic resolution. Biochemistry 41:6651–6659
Silva IR et al (2014) Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations. Appl Microbiol Biotechnol 98:4521–4531
Silva IR, Jers C, Meyer AS, Mikkelsen JD (2016) Rhamnogalacturonan I modifying enzymes: an update. New Biotechnol 33:41–54
Singh J, Kundu D, Das M, Banerjee R (2019) Enzymatic processing of juice from fruits/vegetables: an emerging trend and cutting edge research in food biotechnology. In: Kuddus M (ed) Enzymes in food biotechnology. Academic Press, Cambridge, pp 419–432
Tang Q, Liu YP, Ren ZG, Yan XX, Zhang LQ (2013) 1.37 Å crystal structure of pathogenic factor pectate lyase from Acidovorax citrulli. Proteins Struct Funct Bioinform 81:1485–1490
Teller DC, Behnke CA, Pappan K, Shen Z, Reese JC, Reeck GR, Stenkamp RE (2014) The structure of rice weevil pectin methylesterase. Acta Crystallogr F Struct Biol Cryst Commun 70:1480–1484
Thomas LM, Doan CN, Oliver RL, Yoder MD (2002) Structure of pectate lyase A: comparison to other isoforms. Acta Crystallogr D Biol Crystallogr 58:1008–1015
Tian G-W, Chen M-H, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83–91
van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477
van Pouderoyen G, Snijder HJ, Benen JA, Dijkstra BW (2003) Structural insights into the processivity of endopolygalacturonase I from Aspergillus niger. FEBS Lett 554:462–466
van Santen Y, Benen JA, Schröter K-H, Kalk KH, Armand S, Visser J, Dijkstra BW (1999) 1.68-Å crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J Biol Chem 274:30474–30480
Vincken J-P, Schols HA, Oomen RJ, Beldman G, Visser RG, Voragen AG (2003) Pectin—the hairy thing. In: Voragen F, Schols H, Visser R (eds) Advances in pectin and pectinase research. Springer, Berlin, pp 47–59
Vitali J, Schick B, Kester HC, Visser J, Jurnak F (1998) The three-dimensional structure of Aspergillus niger pectin lyase B at 1.7-Å resolution. Plant Physiol 116:69–80
Walker SG, Ryan ME (2003) Cloning and expression of a pectate lyase from the oral spirochete Treponema pectinovorum ATCC 33768. FEMS Microbiol Lett 226:385–390
Wang Z-Y, MacRae EA, Wright MA, Bolitho KM, Ross GS, Atkinson RG (2000) Polygalacturonase gene expression in kiwifruit: relationship to fruit softening and ethylene production. Plant Mol Biol 42:317–328
Wang D, Yeats TH, Uluisik S, Rose JK, Seymour GB (2018) Fruit softening: revisiting the role of pectin. Trends Plant Sci 23:302–310
Wei Y, Schottel JL, Derewenda U, Swenson L, Patkar S, Derewenda ZS (1995) A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nat Struct Mol Biol 2:218–223
Wong D (2008) Enzymatic deconstruction of backbone structures of the ramified regions in pectins. Protein J 27:30–42
Wu Y, Yin Z, Xu L, Feng H, Huang L (2018) VmPacC is required for acidification and virulence in Valsa mali. Front Microbiol 9:1981
Xiao Z, Bergeron H, Grosse S, Beauchemin M, Garron M-L, Shaya D, Sulea T, Cygler M, Lau PC (2008) Improvement of the thermostability and activityof a pectate lyase by single amino acid substitutions, using a strategy based on melting-temperature-guided sequence alignment. Appl Environ Microbiol 74:1183–1189
Yapo BM (2011) Pectic substances: from simple pectic polysaccharides to complex pectins—a new hypothetical model. Carbohydr Polym 86:373–385
Yip VL, Withers SG (2006) Breakdown of oligosaccharides by the process of elimination. Curr Opin Chem Biol 10:147–155
Yoder M, Jurnak F (1995a) Protein motifs. 3. The parallel beta helix and other coiled folds. FASEB J 9:335–342
Yoder MD, Jurnak F (1995b) The refined three-dimensional structure of pectate lyase C from Erwinia chrysanthemi at 2.2 angstrom resolution (implications for an enzymatic mechanism). Plant Physiol 107:349–364
Yoder MD, Keen NT, Jurnak F (1993a) New domain motif: the structure of pectate lyase C, a secreted plant virulence factor. Science 260:1503–1507
Yoder MD, Lietzke SE, Jurnak F (1993b) Unusual structural features in the parallel β-helix in pectate lyases. Structure 1:241–251
Yue X, Lin S, Yu Y, Huang L, Cao J (2018) The putative pectin methylesterase gene, BcMF23a, is required for microspore development and pollen tube growth in Brassica campestris. Plant Cell Rep 37:1003–1009
Zandleven J, Beldman G, Bosveld M, Benen J, Voragen A (2005) Mode of action of xylogalacturonan hydrolase towards xylogalacturonan and xylogalacturonan oligosaccharides. Biochem J 387:719–725
Zandleven J, Beldman G, Bosveld M, Schols H, Voragen A (2006) Enzymatic degradation studies of xylogalacturonans from apple and potato, using xylogalacturonan hydrolase. Carbohydr Polym 65:495–503
Zega A, D’Ovidio R (2016) Genome-wide characterization of pectin methyl esterase genes reveals members differentially expressed in tolerant and susceptible wheats in response to Fusarium graminearum. Plant Physiol Biochem 08:1–11
Zheng Y et al (2012) Crystal structure and substrate-binding mode of a novel pectate lyase from alkaliphilic Bacillus sp. N16-5. Biochem Biophys Res Commun 420:269–274
Acknowledgements
The author would like to thank Dr. Bamaprasad Bag at Institute of Minerals and Materials Technology, Bhubaneswar and Dr. Hirak Chakraborty, Department of Chemistry, Sambalpur University for critical reading of the manuscript and fruitful suggestions.
Funding
None.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
None.
Ethical approval
This review does not contain any studies with human participants or animals performed by the author.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Kanungo, A., Bag, B.P. Structural insights into the molecular mechanisms of pectinolytic enzymes. J Proteins Proteom 10, 325–344 (2019). https://doi.org/10.1007/s42485-019-00027-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42485-019-00027-5