Skip to main content

Quantum semi-supervised kernel learning

Abstract

Quantum machine learning methods have the potential to facilitate learning using extremely large datasets. While the availability of data for training machine learning models is steadily increasing, oftentimes it is much easier to collect feature vectors to obtain the corresponding labels. One of the approaches for addressing this issue is to use semi-supervised learning, which leverages not only the labeled samples, but also unlabeled feature vectors. Here, we present a quantum machine learning algorithm for training semi-supervised kernel support vector machines. The algorithm uses recent advances in quantum sample-based Hamiltonian simulation to extend the existing quantum LS-SVM algorithm to handle the semi-supervised term in the loss. Through a theoretical study of the algorithm’s computational complexity, we show that it maintains the same speedup as the fully-supervised quantum LS-SVM.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Allcock J, Hsieh CY (2020) A quantum extension of SVM-perf for training nonlinear SVMs in almost linear time. Quantum 4:342

    Article  Google Scholar 

  2. Arodz T, Saeedi S (2019) Quantum sparse support vector machines. arXiv:190201879

  3. Arrazola JM, Delgado A, Bardhan BR, Lloyd S (2019) Quantum-inspired algorithms in practice. arXiv:190510415

  4. Arunachalam S, de Wolf R (2017) A survey of quantum learning theory. ACM SIGACT News 48(2):41–67

    MathSciNet  Article  Google Scholar 

  5. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7(11)

  6. Berry DW, Ahokas G, Cleve R, Sanders BC (2007) Efficient quantum algorithms for simulating sparse Hamiltonians. Commun Math Phys 270(2):359–371

    MathSciNet  Article  Google Scholar 

  7. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549(7671):195

    Article  Google Scholar 

  8. Chia NH, Gilyén A, Li T, Lin HH, Tang E, Wang C (2020) Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning. In: Proceedings of the 52nd Annual ACM SIGACT symposium on theory of computing, pp 387–400

  9. Ding C, Bao TY, Huang HL (2019) Quantum-inspired support vector machine. arXiv:190608902

  10. Dunjko V, Briegel HJ (2018) Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep Prog Phys 81(7):074001

    MathSciNet  Article  Google Scholar 

  11. Eikmeier N, Gleich DF (2017) Revisiting power-law distributions in spectra of real world networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 817–826

  12. Gilyén A, Lloyd S, Tang E (2018) Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension. arXiv:181104909

  13. Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for linear systems of equations. Phys Rev Lett 103(15):150502

    MathSciNet  Article  Google Scholar 

  14. Kimmel S, Lin CYY, Low GH, Ozols M, Yoder TJ (2017) Hamiltonian simulation with optimal sample complexity. NPJ Quantum Inf 3(1):13

    Article  Google Scholar 

  15. Li T, Chakrabarti S, Wu X (2019) Sublinear quantum algorithms for training linear and kernel-based classifiers. In: Proceedings of the 36th international conference on machine learning, pp 3815– 3824

  16. Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal component analysis. Nat Phys 10(9):631

    Article  Google Scholar 

  17. Melacci S, Belkin M (2011) Laplacian support vector machines trained in the primal. J Mach Learn Res 12:1149–1184

    MathSciNet  MATH  Google Scholar 

  18. Perdomo-Ortiz A, Benedetti M, Realpe-Gómez J, Biswas R (2018) Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Sci Technol 3(3):030502

    Article  Google Scholar 

  19. Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector machine for big data classification. Phys Rev Lett 113(13):130503

    Article  Google Scholar 

  20. Schölkopf B, Herbrich R, Smola AJ (2001) A generalized representer theorem. In: International conference on computational learning theory, COLT’01. Springer, pp 416–426

  21. Schuld M, Petruccione F (2018) Supervised learning with quantum computers. Springer Nature, New York

    Book  Google Scholar 

  22. Steinwart I, Hush D, Scovel C (2011) Training svms without offset. J Mach Learn Res 12(1)

  23. Tang E (2018) Quantum-inspired classical algorithms for principal component analysis and supervised clustering. arXiv:181100414

  24. Tang E (2019) A quantum-inspired classical algorithm for recommendation systems. In: Proceedings of the 51st annual ACM SIGACT symposium on theory of computing, pp 217–228

  25. Wathen AJ, Zhu S (2015) On spectral distribution of kernel matrices related to radial basis functions. Numer Algorithm 70(4):709–726

    MathSciNet  Article  Google Scholar 

  26. Wiebe N, Braun D, Lloyd S (2012) Quantum algorithm for data fitting. Phys Rev Lett 109(5):050505

    Article  Google Scholar 

Download references

Funding

T.A. is supported by NSF grant IIS-1453658.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tom Arodz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saeedi, S., Panahi, A. & Arodz, T. Quantum semi-supervised kernel learning. Quantum Mach. Intell. 3, 24 (2021). https://doi.org/10.1007/s42484-021-00053-x

Download citation

Keywords

  • Quantum machine learning
  • Semi-supervised learning
  • Support vector machines
  • Quantum computing
  • Machine learning