Skip to main content

Quantum computing methods for supervised learning

Abstract

The last two decades have seen an explosive growth in the theory and practice of both quantum computing and machine learning. Modern machine learning systems process huge volumes of data and demand massive computational power. As silicon semiconductor miniaturization approaches its physics limits, quantum computing is increasingly being considered to cater to these computational needs in the future. Small-scale quantum computers and quantum annealers have been built and are already being sold commercially. Quantum computers can benefit machine learning research and application across all science and engineering domains. However, owing to its roots in quantum mechanics, research in this field has so far been confined within the purview of the physics community, and most work is not easily accessible to researchers from other disciplines. In this paper, we provide a background and summarize key results of quantum computing before exploring its application to supervised machine learning problems. By eschewing results from physics that have little bearing on quantum computation, we hope to make this introduction accessible to data scientists, machine learning practitioners, and researchers from across disciplines.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    Different interpretations exist regarding the collapse of the quantum state (Schlosshauer et al. 2013). The popular Copenhagen Interpretation suggests that the wave function of a quantum system collapses on observation. The alternative Many Worlds Interpretation suggests that there is no collapse of the wave function; instead, the act of observation results in the observer getting entangled with the observed system.

  2. 2.

    Although perfect cloning is impossible, Bužek and Hillery (1996) proposed a universal cloning machine that can make imperfect copies of unknown quantum states with high fidelity.

  3. 3.

    In the context of quantum computing, an adiabatic process is a process which changes the state of a system so gradually that the state can adapt its configuration at each point.

  4. 4.

    The Hamiltonian operator represents the total energy of the system.

  5. 5.

    The recent quantum supremacy experiment conducted by Google used only 54 qubits (Arute et al. 2019).

  6. 6.

    Input qubits that do not hold any input data but are added to satisfy other conditions (most often reversibility of the transformation) are called auxiliary or ancillary qubits.

  7. 7.

    The quantum phase estimation algorithm can estimate the phase (or eigenvalue) of an eigenvector of a unitary operator.

  8. 8.

    This is the general form used in modern feedforward neural networks. The original perceptron used a step activation function and produced only binary outputs 0 and 1.

  9. 9.

    Many informal texts now relegate all other learning algorithms to the category conventional machine learning.

  10. 10.

    Developing a quantum alternative to a classical computation technique is often referred to as quantizing it although we prefer this term is used sparingly.

  11. 11.

    Quantum dots are nanometre-scale semiconductor particles.

  12. 12.

    Quantum tomography is the process by which a quantum state is reconstructed using measurements on an ensemble of identical quantum states.

References

  1. Aaronson S (2015) Read the fine print. Nat Phys 11(4):291

    Article  Google Scholar 

  2. Abbas A, Schuld M, Petruccione F (2020) On quantum ensembles of quantum classifiers. Quantum Mach Intell 2(1):1

    Article  Google Scholar 

  3. Ackley DH, Hinton G, Sejnowski TJ (1985) A learning algorithm for Boltzmann machines. Cogn Sci 9(1):147

    Article  Google Scholar 

  4. Adachi SH, Henderson MP (2015) Application of quantum annealing to training of deep neural networks. arXiv:1510.06356

  5. Adcock J, Allen E, Day M, Frick S, Hinchliff J, Johnson M, Morley-Short S, Pallister S, Price A, Stanisic S (2015) Advances in quantum machine learning. arXiv:1512.02900

  6. Aïmeur E, Brassard G, Gambs S (2006) Machine learning in a quantum world. In: Conference of the Canadian society for computational studies of intelligence. Springer, pp 431–442

  7. Albash T, Lidar DA (2018) Adiabatic quantum computation. Rev Modern Phys 90(1):015002

    MathSciNet  Article  Google Scholar 

  8. Allcock J, Hsieh CY, Kerenidis I, Zhang S (2018) Quantum algorithms for feedforward neural networks. arXiv:1812.03089

  9. Ambainis A, Regev O (2004) An elementary proof of the quantum adiabatic theorem. arXiv:quant-ph/0411152

  10. Amin MH, Andriyash E, Rolfe J, Kulchytskyy B, Melko R (2018) Quantum boltzmann machine. Phys Rev X 8(2):021050

    Google Scholar 

  11. Anguita D, Ridella S, Rivieccio F, Zunino R (2003) Quantum optimization for training support vector machines. Neural Netw 16(5-6):763

    MATH  Article  Google Scholar 

  12. Arrazola JM, Delgado A, Bardhan BR, Lloyd S (2019) Quantum-inspired algorithms in practice. arXiv:1905.10415

  13. Arunachalam S, Gheorghiu V, Jochym-O’Connor T, Mosca M, Srinivasan PV (2015) On the robustness of bucket brigade quantum RAM. New J Phys 17(12):123010

    MATH  Article  Google Scholar 

  14. Arunachalam S, de Wolf R (2017) Guest column: a survey of quantum learning theory. ACM SIGACT News 48(2):41

    MathSciNet  Article  Google Scholar 

  15. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG, Buell DA, et al. (2019) Quantum supremacy using a programmable superconducting processor. Nature 574(7779):505

    Article  Google Scholar 

  16. Beer K, Bondarenko D, Farrelly T, Osborne TJ, Salzmann R, Scheiermann D, Wolf R (2020) Training deep quantum neural networks. Nat Commun 11(1):1

    Article  Google Scholar 

  17. Behrman EC, Nash L, Steck JE, Chandrashekar V, Skinner SR (2000) Simulations of quantum neural networks. Inform Sci 128(3-4):257

    MathSciNet  MATH  Article  Google Scholar 

  18. Benioff P (1980) The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J Stat Phys 22(5):563

    MathSciNet  MATH  Article  Google Scholar 

  19. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549(7671):195

    Article  Google Scholar 

  20. Bian Z, Chudak F, Macready WG, Rose G (2010) The Ising model: teaching an old problem new tricks. D-wave systems 2

  21. Biswas R, Jiang Z, Kechezhi K, Knysh S, Mandrà S., O’Gorman B, Perdomo-Ortiz A, Petukhov A, Realpe-Gómez J., Rieffel E, et al. (2017) A NASA perspective on quantum computing: Opportunities and challenges. Parallel Comput 64:81

    MathSciNet  Article  Google Scholar 

  22. Brassard G, Hoyer P (1997) An exact quantum polynomial-time algorithm for Simon’s problem. In: Proceedings of the fifth Israeli symposium on theory of computing and systems. IEEE, pp 12–23

  23. de Broglie L (1924) XXXV. A tentative theory of light quanta. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47(278):446

    Article  Google Scholar 

  24. Buhrman H, Cleve R, Watrous J, De Wolf R (2001) Quantum fingerprinting. Phys Rev Lett 87(16):167902

    Article  Google Scholar 

  25. Bužek V, Hillery M (1996) Quantum copying: Beyond the no-cloning theorem. Phys Rev A 54(3):1844

    MathSciNet  Article  Google Scholar 

  26. Cao Y, Guerreschi GG, Aspuru-Guzik A (2017) Quantum Neuron: an elementary building block for machine learning on quantum computers. arXiv:1711.11240

  27. Castelvecchi D (2017) IBM’s quantum cloud computer goes commercial. Nature News 543 (7644):159

    Article  Google Scholar 

  28. Chen H, Wossnig L, Severini S, Neven H, Mohseni M (2021) Universal discriminative quantum neural networks. Quantum Mach Intell 3(1):1

    Article  Google Scholar 

  29. Ciliberto C, Herbster M, Ialongo AD, Pontil M, Rocchetto A, Severini S, Wossnig L (2018) Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2209):20170551

    MathSciNet  MATH  Article  Google Scholar 

  30. Cong I, Choi S, Lukin MD (2019) Quantum convolutional neural networks. Nat Phys 15 (12):1273–1278. https://doi.org/10.1038/s41567-019-0648-8

    Article  Google Scholar 

  31. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273

    MATH  Google Scholar 

  32. Deutsch D (1985) Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A Mathematical and Physical Sciences 400(1818):97

    MathSciNet  MATH  Article  Google Scholar 

  33. Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences 439(1907):553

    MathSciNet  MATH  Google Scholar 

  34. Dunjko V, Briegel HJ (2018) Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics 81(7):074001

    MathSciNet  Article  Google Scholar 

  35. Dunjko V, Wittek P (2020) A non-review of quantum machine learning: trends and explorations. Quantum Views 4:32

    Article  Google Scholar 

  36. Durr C, Hoyer P (1996) A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014

  37. Edwards DA (1979) The mathematical foundations of quantum mechanics. Synthese 42(1):1

    MathSciNet  MATH  Article  Google Scholar 

  38. Einstein A (1905) On a heuristic viewpoint concerning the production and transformation of light. Annalen der Physik

  39. Farhi E, Goldstone J, Gutmann S, Sipser M (2000) Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106

  40. Farhi E, Neven H (2018) Classification with quantum neural networks on near term processors. arXiv:1802.06002

  41. Feynman RP (1999) Simulating physics with computers. 1982, reprinted in: Feynman and Computation

  42. Friedman TL (2015) Moore’s law turns 50. The New York Times 13

  43. Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access memory. Phys Rev Lett 100(16):160501

    MathSciNet  MATH  Article  Google Scholar 

  44. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    MATH  Google Scholar 

  45. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp 212–219

  46. Grover L, Rudolph T (2002) Creating superpositions that correspond to efficiently integrable probability distributions. arXiv:quant-ph/0208112quant-ph/0208112

  47. Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for linear systems of equations. Phys Rev Lett 103(15):150502

    MathSciNet  Article  Google Scholar 

  48. Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567(7747):209

    Article  Google Scholar 

  49. Hinton G (2002) Training products of experts by minimizing contrastive divergence. Neural computation 14(8):1771

    MATH  Article  Google Scholar 

  50. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79(8):2554

    MathSciNet  MATH  Article  Google Scholar 

  51. Johnston H (2013) D-Wave sells second quantum computer-this time to NASA. Phys World 26 (07):9

    Article  Google Scholar 

  52. Jouppi NP, Young C, Patil N, Patterson D, Agrawal G, Bajwa R, Bates S, Bhatia S, Boden N, Borchers A et al (2017) In-datacenter performance analysis of a tensor processing unit. In: Proceedings of the 44th annual international symposium on computer architecture, pp 1–12

  53. Kak SC (1995) Quantum neural computing. In: Advances in imaging and electron physics, vol 94. Elsevier, pp 259–313

  54. Kapoor A, Wiebe N, Svore K (2016) Quantum perceptron models. In: Advances in neural information processing systems, pp 3999–4007

  55. Kerenidis I, Landman J, Prakash A (2019) Quantum algorithms for deep convolutional neural networks. arXiv:1911.01117

  56. Kliesch M, Barthel T, Gogolin C, Kastoryano M, Eisert J (2011) Dissipative quantum church-turing theorem. Phys Rev Lett 107(12):120501

    Article  Google Scholar 

  57. Kopczyk D (2018) Quantum machine learning for data scientists. arXiv:1804.10068

  58. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  59. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278

    Article  Google Scholar 

  60. Leiserson CE, Thompson NC, Emer JS, Kuszmaul BC, Lampson BW, Sanchez D, Schardl TB (2020) There’s plenty of room at the Top: What will drive computer performance after Moore’s law? Science 368(6495)

  61. Li Y, Benjamin SC (2017) Efficient variational quantum simulator incorporating active error minimization. Phys Rev X 7(2):021050

    Google Scholar 

  62. Lloyd S, Mohseni M, Rebentrost P (2013) Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411

  63. Lloyd S, Schuld M, Ijaz A, Izaac J, Killoran N (2020) Quantum embeddings for machine learning

  64. Maxwell JC (1865) VIII. A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London 155:459. https://royalsocietypublishing.org/doi/10.1098/rstl.1865.0008

    Google Scholar 

  65. McClean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The theory of variational hybrid quantum-classical algorithms. New J Phys 18(2):023023

    MATH  Article  Google Scholar 

  66. Mengoni R, Di Pierro A (2019) Kernel methods in quantum machine learning. Quantum Mach Intell 1(3):65

    Article  Google Scholar 

  67. Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit learning. Phys Rev A 98(3):032309

    Article  Google Scholar 

  68. Montanaro A (2016) Quantum algorithms: an overview. npj Quantum Information 2(1):1

    Article  Google Scholar 

  69. Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with CUDA. Queue 6(2):40

    Article  Google Scholar 

  70. Nielsen MA, Chuang I (2002) Quantum computation and quantum information

  71. Peruš M (2000) Neural networks as a basis for quantum associative networks. Neural Netw World 10(6):1001

    Google Scholar 

  72. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes 3rd edition: The art of scientific computing. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  73. Rebentrost P, Bromley TR, Weedbrook C, Lloyd S (2018) Quantum Hopfield neural network. Phys Rev A 98(4):042308

    Article  Google Scholar 

  74. Rebentrost P, Mohseni M, Lloyd S (2012) Quantum support vector machine for big feature and big data classifica-tion. arXiv:1307.0471 2014

  75. Rumelhart DE, Hinton G, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533

    MATH  Article  Google Scholar 

  76. Salakhutdinov R, Hinton G (2009) Deep boltzmann machines. In: Artificial intelligence and statistics, pp 448–455

  77. Santoro GE, Tosatti E (2006) Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J Phys A Math Gen 39(36):R393

    MathSciNet  MATH  Article  Google Scholar 

  78. Schlosshauer M, Kofler J, Zeilinger A (2013) A snapshot of foundational attitudes toward quantum mechanics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44(3):222

    MATH  Article  Google Scholar 

  79. Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28(6):1049

    Article  Google Scholar 

  80. Schuld M, Bocharov A, Svore KM, Wiebe N (2020) Circuit-centric quantum classifiers. Phys Rev A 101(3):032308

    MathSciNet  Article  Google Scholar 

  81. Schuld M, Killoran N (2019) Quantum machine learning in feature Hilbert spaces. Phys Rev Lett 122(4):040504

    Article  Google Scholar 

  82. Schuld M, Petruccione F (2018) Quantum ensembles of quantum classifiers. Scientific Reports 8(1):1

    MATH  Article  Google Scholar 

  83. Schuld M, Petruccione F (2018) Supervised learning with quantum computers. Springer, Berlin

    MATH  Book  Google Scholar 

  84. Schuld M, Sinayskiy I, Petruccione F (2015) Simulating a perceptron on a quantum computer. Phys Lett A 379(7):660

    MATH  Article  Google Scholar 

  85. Schuld M, Sinayskiy I, Petruccione F (2015) An introduction to quantum machine learning. Contemp Phys 56(2):172

    MATH  Article  Google Scholar 

  86. Servedio RA, Gortler SJ (2004) Equivalences and separations between quantum and classical learnability. SIAM J Comput 33(5):1067

    MathSciNet  MATH  Article  Google Scholar 

  87. Shor PW (1999) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review 41(2):303

    MathSciNet  MATH  Article  Google Scholar 

  88. Sperling E (2018) Quantum effects at 7/5nm and beyond. Semiconductor Egineering

  89. Tang E (2019) A quantum-inspired classical algorithm for recommendation systems. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp 217–228

  90. Temme K, Bravyi S, Gambetta JM (2017) Error mitigation for short-depth quantum circuits. Phys Rev Lett 119(18):180509

    MathSciNet  Article  Google Scholar 

  91. Ventura D, Martinez T (2000) Quantum associative memory. Inform Sci 124(1-4):273

    MathSciNet  Article  Google Scholar 

  92. Wan KH, Dahlsten O, Kristjánsson H, Gardner R, Kim M (2017) Quantum generalisation of feedforward neural networks. npj Quantum Information 3(1):1

    Article  Google Scholar 

  93. Wiebe N, Braun D, Lloyd S (2012) Quantum algorithm for data fitting. Phys Rev Lett 109(5):050505

    Article  Google Scholar 

  94. Wiebe N, Kapoor A, Svore K (2014a) Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. arXiv:1401.2142

  95. Wiebe N, Kapoor A, Svore K (2014b) Quantum deep learning. arXiv:1412.3489

  96. Willsch D, Willsch M, De Raedt H, Michielsen K (2020) Support vector machines on the D-Wave quantum annealer. Comput Phys Commun 248:107006

    MathSciNet  Article  Google Scholar 

  97. Wittek P (2014) Quantum machine learning: what quantum computing means to data mining. Academic Press, Cambridge

    MATH  Google Scholar 

  98. Wootters WK, Zurek WH (1982) A single quantum cannot be cloned. Nature 299(5886):802

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Viraj Kulkarni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, V., Kulkarni, M. & Pant, A. Quantum computing methods for supervised learning. Quantum Mach. Intell. 3, 23 (2021). https://doi.org/10.1007/s42484-021-00050-0

Download citation

Keywords

  • Quantum machine learning
  • Quantum computing
  • Machine learning
  • Artificial intelligence