Skip to main content
Log in

The overall performance of graphene oxide-reinforced epichlorohydrin rubber nanocomposites

  • Short Communication
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

In this work, the nanocomposites based on epichlorohydrin rubber (ECO) and graphene oxide (GO) have been prepared by solvent blending followed by open mill mixing, which is known to be an effective way of dispersing nanofillers within a polymer matrix. The successful dispersion of GO sheets within the ECO matrix has been confirmed by high-resolution transmission electron microscopy and atomic force microscopy. The incorporation of 1.5 vol.% of GO sheets into the ECO matrix enhances the breaking stress and stress at 200% strain values of ECO by 67% and 139%, respectively, which is due to the strong interfacial interactions between the polar groups in ECO and the oxygen-containing functional groups on the surfaces of GO sheets. This general finding is further corroborated by the fact that ECO's glass transition temperature increased from − 18 to − 14 °C with a 1.5 vol% GO content. The initial degradation temperature, the maximum degradation temperature and the percentage residue of ECO consistently increase with the concentration of GO due to the enhanced interfacial interaction between ECO and GO through chemical bonding, which delays the initial degradation by hampering the process of degradation. The uniform dispersion of GO sheets within the ECO matrix, along with improved interactions between GO sheets and ECO, results in the formation of a densely interconnected network of GO layers within the ECO chains. Consequently, this enhances the oil and fuel resistance of the ECO-GO nanocomposites. The fascinating results and outcomes of this investigation will pave the way for the development of fuel and oil-resistant materials with improved physico-mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  2. Park HJ, Meyer J, Roth S, Skákalová V (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48:1088–1094. https://doi.org/10.1016/j.carbon.2009.11.030

    Article  CAS  Google Scholar 

  3. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162. https://doi.org/10.1103/RevModPhys.81.109

    Article  CAS  Google Scholar 

  4. Lima MP, Padilha JE, Pontes RB, Fazzio A, da Silva AJR (2017) Stacking-dependent transport properties in few-layers graphene. Solid State Commun 250:70–74. https://doi.org/10.1016/j.ssc.2016.11.012

    Article  CAS  Google Scholar 

  5. Mohamed A, Ardyani T, Abu Bakar S, Sagisaka M, Umetsu Y, Hamon JJ, Rahim BA, Esa SR, Abdul Khalil HPS, Mamat MH, King S, Eastoe J (2018) Rational design of aromatic surfactants for graphene/natural rubber latex nanocomposites with enhanced electrical conductivity. J Colloid Interface Sci 516:34–47. https://doi.org/10.1016/j.jcis.2018.01.041

    Article  CAS  PubMed  Google Scholar 

  6. Ardyani T, Mohamed A, Bakar SA, Sagisaka M, Umetsu Y, Mamat MH, Ahmad MK, Khalil HPSA, King S, Rogers SE, Eastoe J (2019) Surfactants with aromatic headgroups for optimizing properties of graphene/natural rubber latex composites (NRL): surfactants with aromatic amine polar heads. J Colloid Interface Sci 545:184–194. https://doi.org/10.1016/j.jcis.2019.03.012

    Article  CAS  PubMed  Google Scholar 

  7. Yu Z, Shi Z, Xu H, Ma X, Tian M, Yin J (2017) Green chemistry: co-assembly of tannin-assisted exfoliated low-defect graphene and epoxy natural rubber latex to form soft and elastic nacre-like film with good electrical conductivity. Carbon 114:649–660. https://doi.org/10.1016/j.carbon.2016.12.049

    Article  CAS  Google Scholar 

  8. Bai X, Wan C, Zhang Y, Zhai Y (2011) Reinforcement of hydrogenated carboxylated nitrile-butadiene rubber with exfoliated graphene oxide. Carbon 49:1608–1613. https://doi.org/10.1016/j.carbon.2010.12.043

    Article  CAS  Google Scholar 

  9. Tian M, Zhang J, Zhang L, Liu S, Zan X, Nishi T, Ning N (2014) Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold. J Colloid Interface Sci 430:249–256. https://doi.org/10.1016/j.jcis.2014.05.034

    Article  CAS  PubMed  Google Scholar 

  10. Kang H, Zuo K, Wang Z, Zhang L, Liu L, Guo B (2014) Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance. Compos Sci Technol 92:1–8. https://doi.org/10.1016/j.compscitech.2013.12.004

    Article  CAS  Google Scholar 

  11. Kim JS, Yun JH, Kim I, Shim SE (2011) Electrical properties of graphene/SBR nanocomposite prepared by latex heterocoagulation process at room temperature. J Ind Eng Chem 17:325–330. https://doi.org/10.1016/j.jiec.2011.02.034

    Article  CAS  Google Scholar 

  12. Xing W, Tang M, Wu J, Huang G, Li H, Lei Z, Fu X, Li H (2014) Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method. Compos Sci Technol 99:67–74. https://doi.org/10.1016/j.compscitech.2014.05.011

    Article  CAS  Google Scholar 

  13. Kim JS, Hong S, Park DW, Shim SE (2010) Water-borne graphene-derived conductive SBR prepared by latex heterocoagulation. Macromol Res 18:558–565. https://doi.org/10.1007/s13233-010-0603-0

    Article  CAS  Google Scholar 

  14. Huang S, Hou J, Yin J, Zhang Z, Ding B, Duan Y, Zhang J (2019) Anti-blooming effect of graphene oxide on natural rubber latex composite films. Compos Sci Technol 174:142–148. https://doi.org/10.1016/j.compscitech.2019.02.027

    Article  CAS  Google Scholar 

  15. Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J (2010) Latex-based concept for the preparation of graphene-based polymer nanocomposites. J Mater Chem 20:3035–3039. https://doi.org/10.1039/b922604d

    Article  CAS  Google Scholar 

  16. Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J Mater Chem 22:10464–10468. https://doi.org/10.1039/c2jm31293j

    Article  CAS  Google Scholar 

  17. Xing W, Wu J, Huang G, Li H, Tang M, Fu X (2014) Enhanced mechanical properties of graphene/natural rubber nanocomposites at low content. Polym Int 63:1674–1681. https://doi.org/10.1002/pi.4689

    Article  CAS  Google Scholar 

  18. Zhan Y, Wu J, Xia H, Yan N, Fei G, Yuan G (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically- assisted latex mixing and in situ reduction process. Macromol Mater Eng 296:590–602. https://doi.org/10.1002/mame.201000358

    Article  CAS  Google Scholar 

  19. Matos CF, Galembeck F, Zarbin AJG (2014) Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon 78:469–479. https://doi.org/10.1016/j.carbon.2014.07.028

    Article  CAS  Google Scholar 

  20. Mao Y, Wen S, Chen Y, Zhang F, Panine P, Chan TW, Zhang L, Liang Y, Liu L (2013) High performance graphene oxide based rubber composites. Sci Rep 3:1–7. https://doi.org/10.1038/srep02508

    Article  Google Scholar 

  21. Wang J, Jia H, Tang Y (2013) Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. J Mater Sci 48:1571–1577. https://doi.org/10.1007/s10853-012-6913-1

    Article  CAS  Google Scholar 

  22. Aguilar-Bolados H, Brasero J, Lopez-Manchado MA, Yazdani-Pedram M (2014) High performance natural rubber/thermally reduced graphite oxide nanocomposites by latex technology. Compos Part B 67:449–454. https://doi.org/10.1016/j.compositesb.2014.08.010

    Article  CAS  Google Scholar 

  23. Stanier DC, Patil AJ, Sriwong C, Rahatekar SS, Ciambella J (2014) The reinforcement effect of exfoliated graphene oxide nanoplatelets on the mechanical and viscoelastic properties of natural rubber. Compos Sci Technol 95:59–66. https://doi.org/10.1016/j.compscitech.2014.02.007

    Article  CAS  Google Scholar 

  24. Panigrahi H, Sreenath PR, Bhowmick AK, Kumar KD (2019) Unique compatibilized thermoplastic elastomer from polypropylene and epichlorohydrin rubber. Polymer 183:121866. https://doi.org/10.1016/j.polymer.2019.121866

    Article  CAS  Google Scholar 

  25. Abbas ZK, Barton SJ, Foot PJS, Morgan H (2007) Conductive polyaniline/poly (epichlorohydrin-co-ethylene oxide) blends prepared in solution. Polym Polym Compos 15:1–7. https://doi.org/10.1177/096739110701500101

    Article  CAS  Google Scholar 

  26. McKeen LW (2017) Elastomers and rubbers. In: McKeen LW (ed) Permeability properties of plastics and elastomers. William Andrew publishing, Norwich, pp 209–247

    Chapter  Google Scholar 

  27. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  28. Panigrahi H, Kumar KD (2022) Jamming carbonaceous nanofiller in the continuous phase and at the blend interface for phenomenal improvement in the overall physico-mechanical properties of compatibilized thermoplastic elastomer. Polymer 257:125261. https://doi.org/10.1016/j.polymer.2022.125261

    Article  CAS  Google Scholar 

  29. Panigrahi H, Sreenath PR, Kotnees DK (2020) Unique compatibilized thermoplastic elastomer with high strength and remarkable ductility: effect of multiple point interactions within a rubber-plastic blend. ACS Omega 5:12789–12808. https://doi.org/10.1021/acsomega.0c00423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu P, Xumin Z, Hongbing J, Qing Y, Jingyi W, Biao Y (2017) High mechanical properties, thermal conductivity and solvent resistance in graphene oxide/styrene-butadiene rubber nanocomposites by engineering carboxylated acrylonitrile-butadiene rubber. Compos Part B 130:257–266. https://doi.org/10.1016/j.compositesb.2017.07.048

    Article  CAS  Google Scholar 

  31. Hernández M, Bernal M, Verdejo R, Ezquerra TA, López-manchado MA (2012) Overall performance of natural rubber/graphene nanocomposites. Comp Sci Tech 73:40–46. https://doi.org/10.1016/j.compscitech.2012.08.012

    Article  CAS  Google Scholar 

  32. Mensah B, Kim S, Arepalli S, Nah C (2014) A study of graphene oxide-reinforced rubber nanocomposite. J Appl Polym Sci 40640:1–9. https://doi.org/10.1002/APP.40640

    Article  Google Scholar 

  33. Sreenath PR, Mandal S, Panigrahi H, Das P, Kumar KD (2020) Carbon dots: fluorescence active, covalently conjugated and strong reinforcing nanofiller for polymer latex. Nano-Struct Nano-Objects 23:100477. https://doi.org/10.1016/j.nanoso.2020.100477

    Article  CAS  Google Scholar 

  34. Sreenath PR, Mandal S, Singh S, Das P, Bhowmick AK, Kumar KD (2020) Remarkable synergetic effect by in-situ covalent hybridization of carbon dots with graphene oxide and carboxylated acrylonitrile butadiene rubber. Polymer 175:283–293. https://doi.org/10.1016/j.polymer.2019.05.051

    Article  CAS  Google Scholar 

  35. Sreenath PR, Mandal S, Singh S, Panigrahi H, Das P, Bhowmick AK, Kumar KD (2020) Unique approach to debundle carbon nanotubes in polymer matrix using carbon dots for enhanced properties. Eur Polym J 123:109454. https://doi.org/10.1016/j.eurpolymj.2019.109454

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Kalinga Institute of Industrial Technology (KIIT) Bhubaneswar Start-Up Research Grant is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Smrutirekha Mishra or Harekrishna Panigrahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest in the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, D.K., Dutta, U., Kumar, S. et al. The overall performance of graphene oxide-reinforced epichlorohydrin rubber nanocomposites. J Rubber Res 27, 61–71 (2024). https://doi.org/10.1007/s42464-023-00234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-023-00234-2

Keywords

Navigation