Skip to main content
Log in

Sustainable coagulation approaches and their impacts towards the properties of natural rubber: a study related to tyre tread applications

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

With an objective to produce superior quality natural rubber (NR) for preparing tyre treads, various coagulation techniques were attempted for NR latex such as mechanical stirring and heating, steam-induced, salt-induced and freeze–thaw process, from which their efficiency was compared with formic acid-coagulated natural rubber. The effect of coagulation methods on molecular weight and thermo-oxidative ageing of resulting rubber was evaluated. The processing and cure characteristics, rubber–filler interaction and mechanical properties of NR were also evaluated. Rubber separated by mechanical stirring followed by heating and freeze–thaw coagulation showed better retention of molecular weight coagulated NR field latex. FTIR spectrum detected a high amount of nitrogenous materials in rubber compared to acid-coagulated natural rubber. Gel permeation chromatography (GPC), Mooney viscosity and black incorporation time were used to characterise the rubber separated by different methods. Different coagulation techniques adopted have very little effect on the glass transition temperature (Tg). Technological and morphological properties of rubber obtained by stirring and freeze–thaw processes are superior compared to other processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Ehabe E, Le Roux Y, Ngolemasango F, Bonfils F, Nkeng G, Nkouonkam B, Sainte-Beuve J, Gobina MS (2002) Effect of maturation on the bulk viscosity and molecular chain length of cuplump natural rubber. J Appl Polym Sci 86:703–708. https://doi.org/10.1002/app.10968

    Article  CAS  Google Scholar 

  2. Fri PS, Nkeng GE, Ehabe EE (2007) Effect of natural coagula maturation on the processability, cure, and mechanical properties of unfilled vulcanizates of Hevea natural rubber. J Appl Polym Sci 103:2359–2363. https://doi.org/10.1002/app.25175

    Article  CAS  Google Scholar 

  3. Toki S, Burger C, Hsiao BS, Amnuaypornsri S, Sakdapipanich J, Tanaka Y (2008) Multi-scaled microstructures in natural rubber characterized by synchrotron X-ray scattering and optical microscopy. J Polym Sci, Part B: Polym Phys 46:2456–2464. https://doi.org/10.1002/polb.21578

    Article  CAS  Google Scholar 

  4. Karino T, Ikeda Y, Yasuda Y, Kohjiya S, Shibayama M (2007) Nonuniformity in natural rubber as revealed by small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscopy. Biomacromol 8:693–699. https://doi.org/10.1021/bm060983d

    Article  CAS  Google Scholar 

  5. Tanaka Y (2001) Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem Technol 74:355–375. https://doi.org/10.5254/1.3547643

    Article  CAS  Google Scholar 

  6. Suzuki T, Osaka N, Endo H, Shibayama M, Ikeda Y, Asai H, Higashitani N, Kokubo Y, Kohjiya S (2010) Nonuniformity in cross-linked natural rubber as revealed by contrast-variation small-angle neutron scattering. Macromolecules 43:1556–1563. https://doi.org/10.1021/ma9019416

    Article  CAS  Google Scholar 

  7. Liao L-S, Liao J-H, Li Y-M, Chen Y-P, Zhao Y-F, He C-Z (2014) Curing kinetics and properties of natural rubber coagulated using microwave radiation. Rubber Chem Technol 87:43–52. https://doi.org/10.5254/rct.13.87932

    Article  CAS  Google Scholar 

  8. Sarath-Kumara SJ, Jansz ER, Mendis LP, Tillekedratne LMK, Wickremasinghe LKG (1987) Production of acid from cocoa sweatings and its use for coagulation of natural rubber latex. J Chem Technol Biotechnol 39:11–18. https://doi.org/10.1002/jctb.280390103

    Article  CAS  Google Scholar 

  9. Ferreira VS, Rêgo INC, Pastore F, Mandai MM, Mendes LS, Santos KAM, Rubim JC, Suarez PAZ (2005) The use of smoke acid as an alternative coagulating agent for natural rubber sheets’ production. Biores Technol 96:605–609. https://doi.org/10.1016/j.biortech.2004.06.008

    Article  CAS  Google Scholar 

  10. Shell J, Wang T, Vejins V, MA B, Wong YL (2004) Liquid Phase NR/Carbon Black Composites in Vibration Isolation Applications. Automotive Elastomeric Conference Dearborn MI.

  11. de Oliveira RG, Menut P, Bonfils F, Vaysse L, Hemar Y, Sanchez C (2015) Acid-induced aggregation and gelation of natural rubber latex particles. Colloids Surf, A 482:9–17. https://doi.org/10.1016/j.colsurfa.2015.04.015

    Article  CAS  Google Scholar 

  12. Krishnan S, Alex R, Kurian T (2014) HAF/silica/nanoclay “ternary” masterbatch and haf/silica binary masterbatch from fresh natural rubber latex. Rubber Chem Technol 87:250–263. https://doi.org/10.5254/rct.13.87908

    Article  CAS  Google Scholar 

  13. Hirata Y, Kondo H, Ozawa Y (2014) 12 - Natural rubber (NR) for the tyre industry. In: Kohjiya S, Ikeda Y (eds) Chemistry, manufacture and applications of natural rubber. Woodhead Publishing, New Delhi, pp 325–352

    Chapter  Google Scholar 

  14. Prasertkittikul S, Chisti Y, Hansupalak N (2013) Deproteinization of natural rubber using protease immobilized on epichlorohydrin cross-linked chitosan beads. Ind Eng Chem Res 52:11723–11731. https://doi.org/10.1021/ie400232r

    Article  CAS  Google Scholar 

  15. Kumarn S, Churinthorn N, Nimpaiboon A, Sriring M, Ho C-C, Takahara A, Sakdapipanich J (2018) Investigating the mechanistic and structural role of lipid hydrolysis in the stabilization of ammonia-preserved hevea rubber latex. Langmuir 34:12730–12738. https://doi.org/10.1021/acs.langmuir.8b02321

    Article  CAS  PubMed  Google Scholar 

  16. Ikeda Y, Yasuda Y, Ohashi T, Yokohama H, Minoda S, Kobayashi H, Honma T (2015) Dinuclear bridging bidentate zinc/stearate complex in sulfur cross-linking of rubber. Macromolecules 48:462–475. https://doi.org/10.1021/ma502063m

    Article  CAS  Google Scholar 

  17. Gu Z, Song G, Liu W, Li P, Gao L, Li H, Hu X (2009) Preparation and properties of styrene butadiene rubber/natural rubber/organo-bentonite nanocomposites prepared from latex dispersions. Appl Clay Sci 46:241–244. https://doi.org/10.1016/j.clay.2009.08.010

    Article  CAS  Google Scholar 

  18. Yunyongwattanakorn J, Sakdapipanich JT, Kawahara S, Hikosaka M, Tanaka Y (2007) Effect of gel on crystallization behavior of natural rubber after accelerated storage hardening test. J Appl Polym Sci 106:455–461. https://doi.org/10.1002/app.26507

    Article  CAS  Google Scholar 

  19. Nimpaiboon A, Amnuaypornsri S, Sakdapipanich J (2013) Influence of gel content on the physical properties of unfilled and carbon black filled natural rubber vulcanizates. Polym Testing 32:1135–1144. https://doi.org/10.1016/j.polymertesting.2013.07.003

    Article  CAS  Google Scholar 

  20. Gao T, Xie R, Zhang L, Gui H, Huang M (2015) Use of rubber process analyzer for characterizing the molecular weight parameters of natural rubber. Int J Poly Sci 2015:e517260. https://doi.org/10.1155/2015/517260

    Article  CAS  Google Scholar 

  21. Ng JW, Othman N, Yusof NH (2022) Various coagulation techniques and their impacts towards the properties of natural rubber latex from Hevea brasiliensis—a comprehensive review related to tyre application. Ind Crops Prod 181:114835. https://doi.org/10.1016/j.indcrop.2022.114835

    Article  Google Scholar 

  22. Ehabe EE, Bonfils F, Sainte-Beuve J, Collet A, Schué F (2006) High-temperature mastication of raw natural rubber: changes in macrostructure and mesostructure. Polym Eng Sci 46:222–227. https://doi.org/10.1002/pen.20433

    Article  CAS  Google Scholar 

  23. Méndez-Hernández ML, Rivera-Armenta JL, Páramo-García U, Corona Galvan S, García-Alamilla R, Salazar-Cruz BA (2016) Synthesis of high cis-1,4-BR with neodymium for the manufacture of tires. Int J Polym Sci 2016:e7239540. https://doi.org/10.1155/2016/7239540

    Article  CAS  Google Scholar 

  24. Bonfils F, Flori A, Sainte Beuve J (1999) Relations between Wallace plasticity and Mw for natural rubber. J Appl Polym Sci 74:3078–3087. https://doi.org/10.1002/(SICI)1097-4628(19991220)74:13%3c3078::AID-APP10%3e3.0.CO;2-6

    Article  CAS  Google Scholar 

  25. Le HH, Tiwari M, Ilisch S, RADUSCH H-J, (2005) Effect of molecular structure on carbon black dispersion in rubber compounds: characterization using the online measured electrical conductivity. KGK, Kautsch Gummi Kunstst 58:575–580

    CAS  Google Scholar 

  26. Sakdapipanich JT (2007) Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments. J Biosci Bioeng 103:287–292. https://doi.org/10.1263/jbb.103.287

    Article  CAS  PubMed  Google Scholar 

  27. Mekkriengkrai D, Sakdapipanich JT, Tanaka Y (2006) Structural characterization of terminal groups in natural rubber: origin of nitrogenous groups. Rubber Chem Technol 79:366–379. https://doi.org/10.5254/1.3547942

    Article  CAS  Google Scholar 

  28. Balani K, Verma V, Agarwal A, Narayan R (2015) Biosurfaces: a materials science and engineering perspective. John Wiley & Sons, Hoboken

    Google Scholar 

  29. Hinchiranan N, Lertweerasirikun W, Poonsawad W, Rempel GL, Prasassarakich P (2009) Cure characteristics and mechanical properties of hydrogenated natural rubber/natural rubber blends. J Appl Polym Sci 111:2813–2821. https://doi.org/10.1002/app.29333

    Article  CAS  Google Scholar 

  30. Sperling LH (2005) Introduction to physical polymer science. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  31. Schollenberger CS, Dinbergs K (1979) Thermoplastic polyurethane elastomer molecular weight-property relations. Further studies. J Elastomers Plast 11:58–91. https://doi.org/10.1177/009524437901100104

    Article  CAS  Google Scholar 

  32. Browning R, Sue H-J, Minkwitz R, Charoensirisomboon P (2011) Effects of acrylonitrile content and molecular weight on the scratch behavior of styrene-acrylonitrile random copolymers. Polym Eng Sci 51:2282–2294. https://doi.org/10.1002/pen.22003

    Article  CAS  Google Scholar 

  33. Xiao S, Sue H-J (2019) Effect of molecular weight on scratch and abrasive wear behaviors of thermoplastic polyurethane elastomers. Polymer 169:124–130. https://doi.org/10.1016/j.polymer.2019.02.059

    Article  CAS  Google Scholar 

  34. Kim D, Ahn B, Kim K, Lee J, Kim IJ, Kim W (2021) Effects of molecular weight of functionalized liquid butadiene rubber as a processing aid on the properties of ssbr/silica compounds. Polymers 13:850. https://doi.org/10.3390/polym13060850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakade S, Kuga A, Hayashi M, Tanaka Y (1997) Highly purified natural rubber IV. Preparation and characteristics of gloves and condoms. J Nat Rubber Res 12:33–42

  36. Othman AB, Murray GAW, Birley AW (1996) Stress relaxation behaviour of natural rubber vulcanisates containing non-rubber constituents. J Nat Rubber Res 11:183–199

  37. Bristow GM (1990) Composition and cure behaviour of skim block natural rubber. J Natl Rubber Res 5:114–134

    CAS  Google Scholar 

  38. Omar NF, Othman N (2011) Effect of carbon black loading on curing characteristics and mechanical properties of waste tyre dust/carbon black hybrid filler filled natural rubber compounds. J Appl Polym Sci 121:1143–1150. https://doi.org/10.1002/app.33511

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Rubber Research Institute of India, Kottayam and Cochin University of Science and Technology for the technical support of this work.

Funding

The author(s) received no financial support for the research, authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaishak Nambiathodi.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nambiathodi, V., Varghese, S. Sustainable coagulation approaches and their impacts towards the properties of natural rubber: a study related to tyre tread applications. J Rubber Res 27, 1–10 (2024). https://doi.org/10.1007/s42464-023-00229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-023-00229-z

Keywords

Navigation