Skip to main content
Log in

Effect of walnut-shell filler as sustainable material with silane to replace carbon black in natural rubber-based tire tread compound

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

In this paper, walnut shell filler of 75–150 µm and 45–75 µm size was used in rubber compound with different loadings (2,3, and 5 phr). At 2, 3, and 5 phr loading, small-size WNS powder (45–75 µm) has higher modulus at 300%, tensile strength and elongation at break than larger-size powder (75–150 µm); however, modulus at 300% is lower than blank compound. As the amount of WNS filler increases, the elongation at break with modulus at 300% and tensile strength decrease. The goal of using silane is to improve the interfacial interaction between WNS filler and the rubber matrix. Larger-size WNS filler using Si69 compound demonstrated higher modulus at 300% with higher elongation at break and tensile strength compared to non-silanised compound; however, modulus at 300% remained lower than blank compound. The silanised compound with both WNS fillers demonstrated slightly higher rebound resilience at 100 °C, slightly lower heat build-up, and slightly lower tan delta at 60 °C than the blank compound. It was demonstrated that small-size WNS filler with silane could partially replace N330 carbon black (3 phr) in natural rubber-based tire tread compound due to its bio-based, biodegradable, renewable and sustainable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Singha A, Thakur VJIJOPM (2008) Synthesis and characterization of Grewia optiva fiber-reinforced PF-based composites. Int J Polym Mater Polym Biomater 57:1059–1074. https://doi.org/10.1080/00914030802257800

    Article  CAS  Google Scholar 

  2. Tangboriboon N, Takkire R, Sangwan W, Sirivat A (2019) bio-CaCO3 from raw eggshell as additive in natural rubber latex glove films. Rubber Chem Technol 92:558–577

    Article  CAS  Google Scholar 

  3. Thakur V, Singha A, Thakur MK (2012) Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J Polym Environ 20:164–174

    Article  CAS  Google Scholar 

  4. Thakur VK, Singha AS, Kaur I, Nagarajarao RP, Liping Y (2010) Characterization, silane functionalization of Saccaharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15:397–414

    Article  CAS  Google Scholar 

  5. Arayapranee W, Na-Ranong N, Rempel GL (2005) Application of rice husk ash as fillers in the natural rubber industry. J Appl Polym Sci 98:34–41

    Article  CAS  Google Scholar 

  6. Kazemi H, Mighri F, Park KW, Frikha S, Rodrigue D (2022) Technology, effect of cellulose fiber surface treatment to replace carbon black in natural rubber hybrid composites. Rubber Chem Technol 95:128–146

    Article  CAS  Google Scholar 

  7. Parmar BS, Chauhan NPS, Deuri AS, Vaidya D, Chundawat NS (2023) Study of physico-mechanical and dynamic mechanical properties of rice husk silica rubber compound replacing carbon black as a sustainable filler. AIP Conf Proc 2715:020032

    Article  CAS  Google Scholar 

  8. Zhou Y, Fan M, Chen L, Zhuang JJCPBE (2015) Lignocellulosic fibre mediated rubber composites: an overview. Compos Part B Eng 76:180–191

    Article  CAS  Google Scholar 

  9. Pirayesh H, Khazaeian A, Tabarsa T (2012) The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Compos Part B Eng 43:3276–3280

    Article  CAS  Google Scholar 

  10. Balaji N, Jayabal SJPOTIOME (2016) Artificial neural network modeling of mechanical behaviors of zea fiber–polyester composites. Part E J Process Mech Eng 230:45–55

    Article  CAS  Google Scholar 

  11. Orue A, Eceiza A, Arbelaiz A (2020) Products, the use of alkali treated walnut shells as filler in plasticized poly (lactic acid) matrix composites. Ind Crop Prod 145

    Article  CAS  Google Scholar 

  12. Zahedi M, Pirayesh H, Khanjanzadeh H, Tabar MM (2013) Design, organo-modified montmorillonite reinforced walnut shell/polypropylene composites. Mater Design 51:803–809

    Article  CAS  Google Scholar 

  13. Miedzianowska J, Masłowski M, Rybiński P, Strzelec K (2020) Properties of chemically modified (selected silanes) lignocellulosic filler and its application in natural rubber biocomposites. Materials 13:4163

    Article  CAS  Google Scholar 

  14. Sowińska-Baranowska A, Maciejewska M, Duda P (2022) The potential application of starch and walnut shells as biofillers for natural rubber (NR) composites. Int J Mol Sci 23:7968

    Article  Google Scholar 

  15. Ansarifar A, Wang L, Ellis R, Kirtley S, Riyazuddin N (2007) Enhancing the mechanical properties of styrene–butadiene rubber by optimizing the chemical bonding between silanized silica nanofiller and the rubber. J Appl Polym Sci 105:322–332

    Article  CAS  Google Scholar 

  16. Ming PTS, Bao CA, Kamaruddin S (2020) The potential of oil palm ash and eggshell powder as hybrid biofillers in natural rubber biocomposites. In: IOP conference series: materials science and engineering. IOP Publishing, p 012013

  17. Roy K, Debnath SC, Tzounis L, Pongwisuthiruchte A, Potiyaraj P (2020) Effect of various surface treatments on the performance of jute fibers filled natural rubber (NR) composites. Polymers 12:369

    Article  CAS  Google Scholar 

  18. Sahu P, Gupta MJPOTIOME (2020) A review on the properties of natural fibres and its bio-composites: effect of alkali treatment. Part L J Mater Des Appl 234:198–217

    Google Scholar 

  19. Srisuwan L, Jarukumjorn K, Suppakarn N (2018) Engineering, effect of silane treatment methods on physical properties of rice husk flour/natural rubber composites. Adv Mater Sci Eng 2018:4583974

    Article  Google Scholar 

  20. Ali A, Ali S, Yu L, Liu H, Khalid S, Hussain A, Qayum MMN, Ying C (2019) Preparation and characterization of starch-based composite films reinforced by apricot and walnut shells. J Appl Polym Sci 136:47978

    Article  Google Scholar 

  21. El-Sabbagh A, Taha I (2013) Characterization of the draping behavior of jute woven fabrics for applications of natural-fiber/epoxy composites. J Appl Polym Sci 130:1453–1465

    Article  CAS  Google Scholar 

  22. Haddou G, Dandurand J, Dantras E, Maiduc H, Thai H, Giang NV, Trung TH, Ponteins P, Lacabanne C (2019) Mechanical properties of continuous bamboo fiber-reinforced biobased polyamide 11 composites. J Appl Polym Sci 136:47623

    Article  Google Scholar 

  23. Kocaman S, Ahmetli GT (2020) Effects of various methods of chemical modification of lignocellulose hazelnut shell waste on a newly synthesized bio-based epoxy composite. J Polym Environ 28:1190–1203

    Article  CAS  Google Scholar 

  24. Kocaman S, Karaman M, Gursoy M, Ahmetli G (2017) Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydr Polym 159:48–57

    Article  CAS  Google Scholar 

  25. Mohan S, Panneerselvam K (2021) An investigation on antibacterial filler property of silver nanoparticles generated from Walnut shell powder by insitu process. Mater Today Proc 39:368–372

    Article  CAS  Google Scholar 

  26. Hejna A, Sulyman M, Przybysz M, Saeb MR, Klein M, Formela KJW, Valorization B (2020) On the correlation of lignocellulosic filler composition with the performance properties of poly (ε-caprolactone) based biocomposites. Waste Biomass Valor 11:1467–1479

    Article  CAS  Google Scholar 

  27. Parmar BS, Chauhan NPS, Jadoun S, Deuri AS, Vaidya D, Rahdar A, Chundawat NS (2022) Study of alkali metals and alkaline earth metals in chlorobutyl rubber-based model truck inner tube compound. Adv Ind Eng Polym Res 5:171–182

    CAS  Google Scholar 

  28. Tiber B, Balcıoğlu HE (2019) Flexural and fracture behavior of natural fiber knitted fabric reinforced composites. Polym Compos 40:217–228

    Article  CAS  Google Scholar 

  29. Shejkar SK, Agrawal A, Agrawal B (2020) Walnut shell particulates as filler material in polymeric matrix: a review. Int J Eng Res Curr Trends 2:41–43

    Google Scholar 

  30. Orue A, Eceiza A, Arbelaiz A (2020) The use of alkali treated walnut shells as filler in plasticized poly (lactic acid) matrix composites. Ind Crops Prod 145

    Article  CAS  Google Scholar 

  31. Jahanban-Esfahlan A, Amarowicz R (2018) Walnut (Juglans regia L.) shell pyroligneous acid: chemical constituents and functional applications. RSC Adv 8:22376–22391

    Article  CAS  Google Scholar 

  32. Członka S, Kairytė A, Miedzińska K, Strąkowska A (2021) Polyurethane composites reinforced with walnut shell filler treated with perlite, montmorillonite and halloysite. Int J Mol Sci 22:7304

    Article  Google Scholar 

  33. Dhiman P, Sharma H (2021) Effect of walnut shell filler on mechanical properties of jute-basalt hybrid epoxy composites. Mater Today Proc 44:4537–4541

    Article  CAS  Google Scholar 

  34. Sowińska-Baranowska A, Maciejewska M, Duda P (2022) The potential application of starch and walnut shells as biofillers for natural rubber (NR) composites. Int J Mol Sci 23:7968

    Article  Google Scholar 

  35. Sattayanurak S, Sahakaro K, Kaewsakul W, Dierkes W, Reuvekamp L, Blume A, Noordermeer J (2021) Elucidating the role of clay-modifier on the properties of silica-and silica/nanoclay-reinforced natural rubber tire compounds. Express Polym Lett 15(7):666–684

    Article  CAS  Google Scholar 

  36. Sattayanurak S, Sahakaro K, Kaewsakul W, Dierkes W, Reuvekamp L, Blume A, Noordermeer J (2021) Enhancing performance of silica-reinforced natural rubber tire tread compounds by applying organoclay as secondary filler. Rubber Chem Technol 94:121–144

    Article  CAS  Google Scholar 

  37. Chundawat NS, Parmar BS, Deuri AS, Vaidya D, Jadoun S, Zarrintaj P, Barani M, Chauhan NPS (2022) Rice husk silica as a sustainable filler in the tire industry. Arab J Chem 15

    Article  CAS  Google Scholar 

  38. Bhattacharyya SK, Parmar BS, Mukhopadhyay R, Bandyopadhyay A (2015) Analysis of autohesion and physico-mechanical properties (multifunctional behavior) of the coagulum from the latex of euphorbia caducifolia haines VIS-À-VIS comparison against synthetic resins in natural rubber compounds. Rubber Chem Technol 88:421–436

    Article  CAS  Google Scholar 

  39. Bhattacharyya SK, Parmar BS, Mukhopadhyay R, Bandyopadhyay A (2017) Application of the resin derived from the native Euphorbia caducifolia haines as multifunctional additive in filled natural rubber compounds. Rubber Chem Technol 90:429–444

    Article  CAS  Google Scholar 

  40. Bhattacharyya SK, Parmar BS, Chakraborty A, Dasgupta S, Mukhopadhyay R, Bandyopadhyay A (2012) Exploring microcrystalline cellulose (mcc) as a green multifunctional additive (MFA) in a typical solution-grade styrene butadiene rubber (S-SBR)-based tread compound. Ind Eng Chem Res 51:10649–10658

    Article  CAS  Google Scholar 

  41. Chundawat NS, Parmar BS, Deuri AS, Vaidya D, Sepehr KS, Chauhan NPS (2020) Walnut shell ash as a sustainable material for compounding with bromobutyl rubber for tire inner liner applications. Polym Compos 41:5317–5330

    Article  CAS  Google Scholar 

  42. Ponnamma D, Sung SH, Hong JS, Ahn KH, Varughese K, Thomas SJEPJ (2014) Influence of non-covalent functionalization of carbon nanotubes on the rheological behavior of natural rubber latex nanocomposites 53:147–159

  43. Sternstein S, Zhu A-JJM (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273

    Article  CAS  Google Scholar 

  44. Sattayanurak S, Sahakaro K, Kaewsakul W, Dierkes WK, Reuvekamp LA, Blume A, Noordermeer JW (2020) Synergistic effect by high specific surface area carbon black as secondary filler in silica reinforced natural rubber tire tread compounds. Polym Test 81

    Article  CAS  Google Scholar 

  45. Hayichelaeh C, Reuvekamp L, Dierkes W, Blume A, Noordermeer J, Sahakaro K (2020) Silica-reinforced natural rubber tire tread compounds containing bio-based process oils. I: aspects of mixing sequence and epoxide content. Rubber Chem Technol 93:360–377

    Article  CAS  Google Scholar 

  46. Meera A, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113:17997–18002

    Article  CAS  Google Scholar 

  47. Kazemi H, Mighri F, Park KW, Frikha S, Rodrigue D (2022) Effect of cellulose fiber surface treatment to replace carbon black in natural rubber hybrid composites. Rubber Chem Technol 95:128–146

    Article  CAS  Google Scholar 

  48. Bindu P, Thomas S (2013) Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B 117:12632–12648

    Article  CAS  Google Scholar 

  49. Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson GJP (2007) The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 48:5662–5670

    Article  CAS  Google Scholar 

  50. Rao PJM (2007) Mechanics of polymer–clay nanocomposites. Macromolecules 40:290–296

    Article  CAS  Google Scholar 

  51. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189

    Article  CAS  Google Scholar 

  52. Katueangngan K, Tulyapitak T, Saetung A, Soontaranon S, Nithi-Uthai N (2020) Interfacial interactions of silica and natural rubber enhanced by hydroxyl telechelic natural rubber as interfacial modifier. J Vinyl Add Technol 26:291–303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the BKT management for their kind permission to publish this work and also thanks to Mr. N. Soni, Mr. K.Vinnet, Mr. A. Chipa, Mr. K. Singh, Mr. C.K Sinha and Mr. A Tank for carry out the testing at SPIH (BKT-R&D).

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Contributions

NSC and NPSC suggested the idea while BSP performed the experimental studies and statistical analysis. BSP, NPSC, PP and SJ wrote the manuscript while NPSC and NSC analysed the paper and interpreted the data. NSC and DV have reviewed the script. All authors discussed the data and agreed to submit the manuscript.

Corresponding author

Correspondence to Narendra Pal Singh Chauhan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chundawat, N.S., Parmar, B.S., Perumal, P. et al. Effect of walnut-shell filler as sustainable material with silane to replace carbon black in natural rubber-based tire tread compound. J Rubber Res 26, 425–439 (2023). https://doi.org/10.1007/s42464-023-00226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-023-00226-2

Keywords

Navigation