Skip to main content
Log in

Sustainable cashew nutshell oil-blocked diphenylmethane diisocyanates in co-polymerisation with natural rubber

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

When cashew nutshell oil (CNSO), a well-known non-edible natural oil, is utilised as a blocking agent with diphenylmethane diisocyanate (MDI), this material displayed several advantages over commonly used petroleum-based phenolic compounds, including favourable deblocking conditions and decreased viscosity and better storage stability. When natural rubber (NR) is exposed to sunlight, ozone, UV radiation, and air, especially at high temperatures, the presence of unsaturated carbon–carbon double bonds in the backbone causes quick breakdown. In this work, the multiple bonds present in NR main chain were utilised and made saturated by the way of green emulsion polymerisation using CNSO-blocked MDI using a simple redox initiator. The polymerisation reaction was carried out at different monomer ratios to analyse the thermal stability of natural rubber. The deblocking temperature for CNSO-blocked MDI was determined using CO2 evolution and the thermo-gravimetric (TGA) methods. Gel time analysis was also conducted and found suitable for heat-curable polyurethane systems. FT-IR and NMR spectroscopic methods were used to examine structural properties. The TGA analysis of copolymer synthesised using NR and CNSO-blocked MDI at an equivalent weight ratio shows higher thermal stability. From this observation, CNSO-blocked MDI greatly improves the thermal stability of natural rubber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3
Scheme 4
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data is available on request from the authors.

References

  1. Avaz G, Meier WU, Casselmann H, Achten D (2012) 10.24–Polyurethanes. Polym Sci A Compr Ref 10:411–441. https://doi.org/10.1016/B978-0-444-53349-4.00275-2

    Article  Google Scholar 

  2. Abushammala H, Mao J (2019) A review of the surface modification of cellulose and nanocellulose using aliphatic and aromatic mono- and di-isocyanates. Molecules 24(15):2782. https://doi.org/10.3390/molecules24152782

    Article  Google Scholar 

  3. Shin SR, Liang JY, Ryu H, Song GS, Lee DS (2019) Effects of isosorbide incorporation into flexible polyurethane foams: reversible urethane linkages and antioxidant activity. Molecules 24(7):1347. https://doi.org/10.3390/molecules24071347

    Article  CAS  Google Scholar 

  4. Sankar G, Yan N (2014) Synthesis and deblocking studies of low temperature heat-curable blocked polymeric methylene diphenyl diisocyanates. J Mol Sci Part A 52(1):47–55. https://doi.org/10.1080/10601325.2014.976748

    Article  CAS  Google Scholar 

  5. Burelo M, Gaytán I, Loza-Tavera H, Cruz-Morales JA, Zárate-Saldaña D, Cruz-Gómez MJ, Gutiérrez S (2022) Synthesis, characterization and biodegradation studies of polyurethanes: effect of unsaturation on biodegradability. Chemosphere 23:136136. https://doi.org/10.1016/j.chemosphere.2022.136136

    Article  CAS  Google Scholar 

  6. Adamu AA, Muhamad SN, Gan SN (2022) Polyurethane resin derived from polyol of palm olein and recycled poly(ethylene terephthalate). Pigment Resin Technol 51(1):6–12. https://doi.org/10.1108/PRT-06-2020-0056

    Article  CAS  Google Scholar 

  7. Burelo M, Martínez A, Cruz-Morales JA, Tlenkopatchev MA, Gutierrez S (2019) Metathesis reaction from bio-based resources: synthesis of diols and macrodiols using fatty alcohols, β-citronellol and natural rubber. Polym Degrad Stabil 166:202–212. https://doi.org/10.1016/j.polymdegradstab.2019.05.021

    Article  CAS  Google Scholar 

  8. Mohapatra S, Nando GB (2013) Chemical modification of natural rubber in the latex stage by grafting cardanol, a waste from the cashew industry and a renewable resource. Ind Eng Chem Res 52:5951–5957. https://doi.org/10.1021/ie400195v

    Article  CAS  Google Scholar 

  9. Calo E, Maffezzoli A, Mele G, Martina F, Mazzetto SE, Tarzia A, Stifani C (2007) Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chem 9:754–759. https://doi.org/10.1039/B617180J

    Article  CAS  Google Scholar 

  10. Mele G, Lomonaco D, Mazzetto SE (2017) Cardanol-based heterocycles: synthesis and applications. In: Cashew nut shell liquid. Springer International Publishing, pp 39–56. https://doi.org/10.1007/978-3-319-47455-7_3

  11. Siwarote B, Sae-Oui P, Wirasate S (2017) Effects of bio-based oils on processing properties and cure characteristics of silica-filled natural rubber compounds. J Rubber Res 20:1–19. https://doi.org/10.1007/BF03449138

    Article  CAS  Google Scholar 

  12. Preetom S, Anil KB (2017) Sustainable rubbers and rubber additives. J Appl Polym Sci 135:45701–45725. https://doi.org/10.1002/app.45701

    Article  CAS  Google Scholar 

  13. Wongthong P, Nakason C, Pan Q, Rempel GL, Kiatkamjornwong S (2013) Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride. Eur Polym J 49(12):4035–4046. https://doi.org/10.1016/j.eurpolymj.2013.09.009

    Article  CAS  Google Scholar 

  14. Benmesli S, Riahi F (2014) Dynamic mechanical and thermal properties of a chemically modified polypropylene/natural rubber thermoplastic elastomer blend. Polym Test 36:54–61. https://doi.org/10.1016/j.polymertesting.2014.03.016

    Article  CAS  Google Scholar 

  15. Zhong JP, Li SD, Peng Z, Yu HP (1999) Study on preparation of chlorinated natural rubber from latex and its thermal stability. J Appl Polym Sci 73:2863–2867. https://doi.org/10.1002/(SICI)1097-4628(19990929)73:14%3c2863::AID-APP9%3e3.0.CO;2-2

    Article  CAS  Google Scholar 

  16. Gelling IR (1985) Modification of natural rubber latex with peracetic acid. Rubber Chem Technol 58(1):86–96. https://doi.org/10.5254/1.3536060

    Article  CAS  Google Scholar 

  17. Mahittikul A, Prasassarakich P, Rempel GL (2006) Hydrogenation of natural rubber latex in the presence of OsHCl(CO)(O2)(PCy3)2. J Appl Polym Sci 100(1):640–655. https://doi.org/10.1002/app.23390

    Article  CAS  Google Scholar 

  18. Huang NJ, Sundberg DC (1995) Fundamental studies of grafting reactions in free radical copolymerization I: a detailed kinetic model for solution polymerization. J Polym Sci Part A Polym Chem 33(15):2533–2549. https://doi.org/10.1002/pola.1995.080331502

    Article  CAS  Google Scholar 

  19. Kim S, Adkins J, Biswas A (2017) Reinforcement of latex rubber by the incorporation of amphiphilic particles. J Rubber Res 20:87–100. https://doi.org/10.1007/BF03449144

    Article  CAS  Google Scholar 

  20. Okieimen FE, Urhoghide IN (2002) Graft copolymerization of acrylonitrile and methyl methacrylate monomer mixtures on crumb natural rubber. J Appl Polym Sci 84(10):1872–1877. https://doi.org/10.1002/app.10474

    Article  CAS  Google Scholar 

  21. Arayapranee W, Prasassarakich P, Rempel GL (2002) Synthesis of graft copolymers from natural rubber using cumene hydroperoxide redox initiator. J Appl Polym Sci 83(14):2993–3001. https://doi.org/10.1002/app.2328

    Article  CAS  Google Scholar 

  22. Songsing K, Vatanatham T, Hansupalak N (2013) Kinetics and mechanism of grafting styrene onto natural rubber in emulsion polymerization using cumene hydroperoxide–tetraethylenepentamine as redox initiator. Eur Polym J 49(5):1007–1016. https://doi.org/10.1016/j.eurpolymj.2013.01.027

    Article  CAS  Google Scholar 

  23. Kawahara S, Kawazura T, Sawada T, Isono Y (2003) Preparation and characterization of natural rubber dispersed in nano-matrix. Polymer 44(16):4527–4531. https://doi.org/10.1016/S0032-3861(03)00415-4

    Article  CAS  Google Scholar 

  24. Zhang Y, Dubé MA (2017) Polymer reaction engineering of dispersed systems. J Adv Polym Sci. https://doi.org/10.1007/12_2017_8

    Article  Google Scholar 

  25. Karthi R, Vennila S, Sankar G (2022) Synthesis and deblocking investigations of phenol blocked aliphatic isocyanates and their application in the development of epoxy-polyurethane films. Asian J Chem 34(2):361–370. https://doi.org/10.14233/ajchem.2022.23574

    Article  CAS  Google Scholar 

  26. Kochthongrasamee T, Prasassarakich P, Kiatkamjornwong S (2006) Effects of redox initiator on graft copolymerization of methyl methacrylate onto natural rubber. J Appl Polym Sci 101(4):2587–2601. https://doi.org/10.1002/app.23997

    Article  CAS  Google Scholar 

  27. Irina D, Peter JCH, Li D, Rebecca P, Marcus R, Regina P (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599. https://doi.org/10.1021/acs.chemrev.5b00354

    Article  CAS  Google Scholar 

  28. Balgude D, Konge K, Sabnis A (2013) Synthesis and characterization of sol-gel derived CNSL based hybrid anti-corrosive coatings. J Sol-Gel Sci Technol 69:155–165. https://doi.org/10.1007/s10971-013-3198-z

    Article  CAS  Google Scholar 

  29. Hu Y, Shang Q, Bo C, Jia P, Feng G, Zhang F, Liu C, Zhou Y (2019) Synthesis and properties of UV-curable polyfunctional polyurethane acrylate resins from cardanol. ACS Omega 4(7):12505–12511. https://doi.org/10.1021/acsomega.9b01174

    Article  CAS  Google Scholar 

  30. Samantarai S, Mahata D, Nag A, Nando GB, Das NC (2017) Functionalization of acrylonitrile butadiene rubber with meta-pentadecenyl phenol, a multifunctional additive and a renewable resource. Rubber Chem Technol 90(4):683–698. https://doi.org/10.5254/rct.17.83728

    Article  CAS  Google Scholar 

  31. Intapun J, Rungruang T, Suchat S, Cherdchim B, Hiziroglu S (2021) The characteristics of natural rubber composites with Klason lignin as a green reinforcing filler: thermal stability, mechanical and dynamical properties. Polymers 13(7):1109. https://doi.org/10.3390/polym13071109

    Article  CAS  Google Scholar 

  32. Lomonaco D, Maia FJN, Mazzetto SE (2012) Thermal evaluation of cashew nutshell liquid as new bioadditives for poly(methyl methacrylate). J Therm Anal Calorim 111(1):619–626. https://doi.org/10.1007/s10973-012-2383-6

    Article  CAS  Google Scholar 

  33. Valencia-Bermudez S, Hernández-López S, Gutiérrez-Nava M, Rojas-García JM, Lugo-Uribe LE (2020) Chain-end functional di-sorbitan oleate monomer obtained from renewable resources as precursors for bio-based polyurethanes. J Polym Environ 28:1406–1419. https://doi.org/10.1007/s10924-020-01692-0

    Article  CAS  Google Scholar 

  34. Nguyen TN, Duy HN, Anh DT, Thi TN, Nguyen TH, Van NN, Quang TT, Huy TN, Thi TT (2020) Improvement of thermal and mechanical properties of vietnam deproteinized natural rubber via graft copolymerization with methyl methacrylate. Int J Polym Sci 11:9037827. https://doi.org/10.1155/2020/9037827

    Article  CAS  Google Scholar 

  35. Nam NH, Anh KD, Truc LGT, Ha TA, Ha VTT (2020) Pyrolysis of cashew nut shell: a parametric study. Vietnam J Chem 58:506–511. https://doi.org/10.1002/vjch.202000015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author Sankar Govindarajan is grateful for the funding of the project under RUSA 2.0 (C3/RI and QI/PF5-Appoint/Theme-2/Group-3/2021/175 dated 14 June 2021). One of the authors (Elavazhagan Gunasekaran) thanks UGC-CSIR, New Delhi, India, for the financial assistance in the form of Junior Research Fellowship (JRF).

Funding

RUSA 2.0 (C3/RI and QI/PF5-Appoint/Theme-2/Group-3/2021/175 dated 14 June 2021), Author Sankar Govindarajan.

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis, investigation, data curation, methodology, EG and VS; conceptualisation, investigation, methodology, SV; resources, supervision, writing—original draft, SG.

Corresponding author

Correspondence to Sankar Govindarajan.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunasekaran, E., Srinivasan, V., Vasam, S. et al. Sustainable cashew nutshell oil-blocked diphenylmethane diisocyanates in co-polymerisation with natural rubber. J Rubber Res 26, 279–289 (2023). https://doi.org/10.1007/s42464-023-00207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-023-00207-5

Keywords

Navigation