Skip to main content
Log in

Validation of microwave-assisted wet digestion of natural rubber for ICP-AES mineral analysis

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

The mineral composition of three types of Hevea latex samples was determined by inductively coupled plasma atomic emission spectroscopy using a microwave-assisted wet digestion method. This method was compared in Round Robin tests to a dry reference method used to analyze leaf minerals. The results show on the one hand that for all elements, the methods studied are robust in terms of performance. Indeed, the low z scores obtained on the reference sample for both methods prove the accuracy of the methods studied. On the other hand, the results of the percentages of Mg, P and K obtained by the wet method are 5 to 10% higher than those obtained by the dry method. This significant difference shows that the wet method is more efficient than the dry method due to less loss of elements and can be used to quantify all elements of interest, especially sulphur, which to date had remained non-quantifiable by the dry method. The results confirmed the technique to be reliable, easy to use in the laboratory, and relatively mild in terms of chemicals However, certain limitations were found for calcium where, given the low contents and heterogeneity of the materials, inductively coupled plasma mass spectrometry, which is more suited to trace analyses, remains the preferred method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Compagnon P (1986) Le caoutchouc naturel. Maisonneuve et Larose:6–15

  2. Clément-Demange A, Nicolas D, Legnaté H, Rivano F, Le Guen V, Gnagne M, Chapuset T (1995) Hévéa stratégies de sélection, Plantations, recherche, developpement. Mai-Juin 20

  3. Jacob JL, Dauzac J, Prevot JC (1993) The composition of natural latex from Hevea brasiliensis. Clin Rev Allergy 11:13

    Article  Google Scholar 

  4. Vaysse L, Bonfils F, Sainte-Beuve J, Cartault M (2012) Natural rubber, i: a comprehensive reference. Elsevier Polym Sci. https://doi.org/10.1016/B978-0-444-53349-4.00267-3

    Article  Google Scholar 

  5. Liengprayoon S, Vaysse L, Jantarasunthorn S, Wadeesirisak K, Chaiyut J, Srisomboon S, Musigamart N, Roytrakul S, Bonfils F, Char C, Bottier C (2017) Fractionation of Hevea brasiliensis latex by centrifugation: (i) a comprehensive description of the biochemical composition of the 4 centrifugation fractions. Chemistry. https://doi.org/10.22302/PPK.PROCIRC2017.V1I1.480

    Article  Google Scholar 

  6. Bittencourt AMB, Tabak D, Costa VG, Lachter ER (1998) Aggregation stability of natural rubber latex with low dry rubber content DRC in acidic medium. Polym Bull. https://doi.org/10.1007/s002890050231

    Article  Google Scholar 

  7. Wititsuwannakul D, Rattanapittayaporn A, Wititsuwannakul R (2002) Rubber biosynthesis by a Hevea latex bottom-fraction membrane. J Appl Polym Sci. https://doi.org/10.1002/app.11674

    Article  Google Scholar 

  8. Liengprayoon S, Vaysse L, Jantarasunthorn S, Wadeesirisak K, Chaiyut J, Srisomboon S, Musigamart N, Rattanaporn K, Char C, Bonfils F, Bottier C (2021) Distribution of the non-isoprene components in the four Hevea brasiliensis latex centrifugation fractions. J Nat Rubb Res. https://doi.org/10.1007/s42464-021-00133-4

    Article  Google Scholar 

  9. Yip E (1990) Clonal characterisation of latex and rubber properties. J Nat Rubb Res 5:52–80

    CAS  Google Scholar 

  10. Liengprayoon S, Chaiyut J, Sriroth K, Bonfils F, Sainte-Beuve J, Dubreucq E, Vaysse L (2013) Lipid compositions of latex and sheet rubber from Hevea brasiliensis depend on clonal origin: lipid compositions of Hevea brasiliensis latex and rubber. Eur J Lipid Sci Technol 115:1021–1031. https://doi.org/10.1002/ejlt.201300023

    Article  CAS  Google Scholar 

  11. Bellacicco S, Prades A, Char C, Vaysse L, Granet F, Lacote R, Gohet E, Flori A, Sainte Beuve J, Bonfils F (2018) The sugar and polyol composition of Hevea brasiliensis latex depends on the clonal origin of the tree. J Nat Rubb Res. https://doi.org/10.1007/bf03449172

    Article  Google Scholar 

  12. Rolere S, Char C, Taulemesse JM, Bergeret A, Sainte-Beuve J, Bonfils F (2016) The majority of minerals present in natural rubber are associated with the macrogel: an ICP-MS and SEM/EDX investigation. J Appl Polym Sci. https://doi.org/10.1002/app.4306

    Article  Google Scholar 

  13. Gopalakrishnan J, Thomas M, Philip A, Krishnakumar R, Jacob J (2010) Contribution of latex cations to the water relations and latex yield in Hevea brasiliensis. J Nat Rubb Res 23:93–97

    Google Scholar 

  14. Gan SN, Ting KF (1993) Effect of treating latex with some metal ions on storage hardening of natural rubber. Polymer. https://doi.org/10.1016/0032-3861(93)90742-S

    Article  Google Scholar 

  15. Karunanayake L, Perera GMP (2006) Effect of magnesium and phosphate ions on the stability of concentrated natural rubber latex and the properties of natural rubber latex–dipped products. J Appl Polym Sci. https://doi.org/10.1002/app.22944

    Article  Google Scholar 

  16. GanSN TKF (1993) Effect of treating latex with some metal ions on storage hardening of natural rubber. Polymer 34:2142–2147

    Article  Google Scholar 

  17. Traoré MS, Diarrassouba M, Okoma KM, Dick KE, Soumahin EF, Coulibaly LF, Obouayeba S (2011) Long-term effect of different annual frequencies of ethylene stimulation on rubber productivity of clone GT 1 of Hevea brasiliensis in South East of Côte d’Ivoire. Agric Biol J North Am. https://doi.org/10.5251/abjna.2011.2.8.1251.1260

    Article  Google Scholar 

  18. Silpi U, Chantuma P, Kasemsap P, Thaler P, Thanisawanyangkura S, Lacointe A, Ameglio T, Gohet E (2006) Spatial distribution of sucrose and metabolic activity in the Laticiferous tissue of three Hevea brasiliensis clones: effects of tapping and ethephon stimulation at trunk scale. J Rubb Res 9:115–131

    CAS  Google Scholar 

  19. Belmas R (1952) Contribution to the physical chemistry of hevea latex. I. Metal cations in latex. Rubb Chem Technol 25:124–132. https://doi.org/10.5254/1.3543359

    Article  CAS  Google Scholar 

  20. Society of chemical industry (1935) Official notices. J Chem Ind 54:336–338

    Article  Google Scholar 

  21. Rolere S, Char C, Taulemesse JM, Bergeret A, Sainte-Beuve J, Bonfils F (2016) The majority of minerals present in natural rubber are associated with the macrogel: an ICP-MS and SEM-EDX investigation. J Appl Polym Sci. https://doi.org/10.1002/app.43062

    Article  Google Scholar 

  22. AFNOR (2018) NF T 90-210—water quality: protocol for the initial evaluation of the performance of a method in a laboratory

  23. Feinberg M (2001) Validation interne des methodes d'analyse-Technique de l' ingénieur 224, pp 1–23

  24. AFNOR (2017) ISO 1795: rubber, raw natural and raw synthetic, Sampling and further preparative procedures

  25. AFNOR (2012) ISO 12914 Soil quality: microwave-assisted extraction of the aqua regia soluble fraction for the determination of elements

  26. AFNOR (2000) ISO 6869:2000 Animal feeding stuffs: determination of the contents of calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc, method using atomic absorption spectrometry

  27. AFNOR (2011) EN 15410—solid recovered fuels—methods for the determination of the content of major elements Al, Ca, Fe, K, Mg, Na, P

  28. Pinta M (1973) Méthodes de référence pour la détermination des éléments minéraux dans les végétaux : determination des éléments : calcium, magnésium, fer, manganèse, zinc et cuivre par absorption atomique. Chemistry 10275017:143–158

    Google Scholar 

  29. AFNOR (2000) ISO 15671-rubber and rubber additives—determination of total sulfur content using an automatic analyser

  30. AFNOR (2018) ISO 6101-rubber determination of metal content by atomic absorption spectrometry

  31. AFNOR (2021) ISO 19050-Rubber, raw, vulcanized—determination of metal content by ICP-OES

Download references

Acknowledgements

Analyses were carried out at CIRAD Laboratory of Water, Soil and Plant Analysis (US Analyses, CIRAD, Montpellier, France). The authors would like to thank the ANAE Unit—Methods and developments in environmental analysis as well as SADEX and USRAVE laboratories for their participation in the inter-laboratory tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Char.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Char, C., Tella, M., Bonfils, F. et al. Validation of microwave-assisted wet digestion of natural rubber for ICP-AES mineral analysis. J Rubber Res 25, 79–88 (2022). https://doi.org/10.1007/s42464-022-00159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-022-00159-2

Keywords

Navigation