Skip to main content

Advertisement

Log in

Novel study on a safe, low-cost natural rubber: Mg-based solid polymer electrolyte for energy storage

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Developing materials for energy storage devices such as batteries, super capacitors and fuel cells has become very crucial in the recent years. It is mainly to address issues related to safety and cost in addition to high performance to accomplish hopes for a safer future. The present study was carried out to fabricate a redox capacitor using a natural rubber (NR)-based solid polymer electrolyte (SPE) and conducting polymer electrodes. NR is a newly introduced substitute for commercially available, toxic polymers. In this study, magnesium trifluoromethanesulfonate (Mg(CF3SO3)2–MgTf) and methyl grafted natural rubber (MGNR) were employed to prepare the SPE using solvent casting technique whereas polypyrrole (PPy) electropolymerized using sodium dodecyl benzenesulfonate (SDBS) and pyrrole were used as electrode materials. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests were conducted to characterize the redox capacitor. Single electrode specific capacitance (Csc) obtained from continuous CV test at the scan rate of 10 mV s−1 within the potential window of − 1.5 to 1.5 V was 41.55 F g−1. According to the GCD test, initial single electrode specific discharge capacitance (Csd) value was 19.4 F g−1 under the current of 5 × 10–5 μA and within the potential window of 0.1–1.5 V. Results are spotlighting the necessity to improve NR-based electrolytes for future energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614. https://doi.org/10.1039/C3EE44164D

    Article  CAS  Google Scholar 

  2. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nano composite paper. Proc Natl Acad Sci 104:13574–13577. https://doi.org/10.1073/pnas.0706508104

    Article  CAS  Google Scholar 

  3. Ahmera MF, Hameed S (2015) Use of organic polymers for energy storage in electrochemical capacitors. Ad Mater Res 1116:202–228

    Article  Google Scholar 

  4. Yogesh K, Pandey GP, Hashmi SA (2012) Gel polymer electrolyte based electrical double layer capacitors: comparative study with multiwalled carbon nanotubes and activated carbon electrodes. J Phys Chem C 116:26118–26127. https://doi.org/10.1021/jp305128z

    Article  CAS  Google Scholar 

  5. Salanne M, Rotenberg B, Naoi K et al (2016) Efficient storage mechanisms for building better super capacitors. Nat Energy 1:16070. https://doi.org/10.1038/nenergy.2016.70

    Article  CAS  Google Scholar 

  6. Jain A, Tripathi SK (2013) Experimental studies on high-performance supercapacitor based on nano gel polymer electrolyte with treated activated charcoal. Ionics 19:549–557. https://doi.org/10.1007/s11581-012-0782-0

    Article  CAS  Google Scholar 

  7. Tripathi SK, Jain A, Gupta A, Kumari M (2013) Studies on redox super capacitor using electrochemically synthesized polypyrrole as electrode material using blend polymer gel electrolyte. Indian J Pure Appl Phy 51:315–319

    CAS  Google Scholar 

  8. Kamisan AS, Kudin TIT, Ali AMM, Yahya MZA (2011) Electrical and physical studies on 49%methyl grafted natural rubber based composite polymer gel electrolytes. Electrochim Acta 57:207–211. https://doi.org/10.1016/j.electacta.2011.06.096

    Article  CAS  Google Scholar 

  9. Hassan MF, Azimi NSN, Kamarudin KH, Sheng CK (2018) Solid polymer electrolytes based on starch-magnesium sulphate:study on morphology and electrical conductivity. ASM Sci J Spec 1:17–28

    Google Scholar 

  10. Mantravadi R, Chinnam PR, Dikin DA, Wunder SL (2016) High conductivity, high strength solid electrolytes formed by in situ encapsulation of ionic liquids in nanofibrillar methylcellulose networks. ACS Appl Mater Interface 21:13426–13436. https://doi.org/10.1021/acsami.6b02903

    Article  CAS  Google Scholar 

  11. Du BW, Hu SY, Singh R, Tsai TT, Lin CC, Ko FU (2017) Eco-friendly and biodegradable biopolymer Chitosan/Y2O3 composite materials in flexible organic thin-film transistors. Mater 10:1026. https://doi.org/10.3390/ma10091026

    Article  CAS  Google Scholar 

  12. Khoon LT, Ataollahi N, Hassan NH, Ahmad A (2015) Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electrochemical devices. J Solid State Electrochem 20(1):203–213. https://doi.org/10.1007/s10008-015-3017-2

    Article  CAS  Google Scholar 

  13. Khoon LT, Zaini NFM, Mobarak NN, Hassan NH, Noor SAM, Mamat S, Ahmad A (2019) PEO based polymer electrolyte comprised of epoxidized natural rubber material (ENR50) for Li-Ion polymer battery application. Electrochim Acta 316:283–291. https://doi.org/10.1016/j.electacta.2019.05.143

    Article  CAS  Google Scholar 

  14. Ali AMM, Yahya MZA, Bahron H, Subban RHY (2006) Electrochemical studies on polymer electrolytes based on poly(methyl methacrylate)-grafted natural rubber for lithium polymer battery. Ionics 12:303–307. https://doi.org/10.1007/s11581-006-0052-0

    Article  CAS  Google Scholar 

  15. Rajapaksha HGN, Perera KS, Vidanapathirana KP (2021) Characterization of a natural rubber based solid polymer electrolyte to be used for a magnesium rechargeable cell. Polym Bull. https://doi.org/10.1007/s00289-021-03749-z

    Article  Google Scholar 

  16. Gómez-Aguilar JF, Escalante-Martínez JE, Calderón-Ramón C, Morales-Mendoza LJ, Benavidez-Cruz M, Gonzalez-Lee M (2016) Equivalent circuits applied in electrochemical impedance spectroscopy and fractional derivatives with and without singular kernel. Adv Math Phys 1:1–15. https://doi.org/10.1155/2016/9720181

    Article  Google Scholar 

  17. Kamisan AS, Kudin TIT, Ali AMM, Yahya MZA (2011) Polymer gel electrolytes based on 49% methyl grafted natural rubber. Sains Malays 40:49–54

    CAS  Google Scholar 

  18. Kumar D, Suleman M, Hashmi SA (2011) Studies on poly (vinylidene fluoride-co-hexa fluoropropylene) based gel electrolyte nanocomposite for sodium—sulfur batteries. Solid State Ionics 202:45–53. https://doi.org/10.1016/j.ssi.2011.09.001

    Article  CAS  Google Scholar 

  19. Khoon LT, Hassan NH, Rahman MYA, Vedarajan R, Matsumi N, Ahmad A (2015) One pot synthesis nano hybrid ZrO2–TiO2 fillers in 49% poly(methyl methacrylate)grafted natural rubber (MG49) based nano composite polymer electrolyte for lithium ion battery application. Solid State Ionics 276:72–79. https://doi.org/10.1016/j.ssi.2015.03.034

    Article  CAS  Google Scholar 

  20. Lufrano F, Staiti P, Minutoli M (2003) Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy. J Power Sources 124:314–320. https://doi.org/10.1016/S0378-7753(03)00589-5

    Article  CAS  Google Scholar 

  21. Prabaharan SRS, Vimala R, Zainal Z (2006) Nanostructured mesoporous carbon as electrodes for supercapacitors. J Power Sources 161:730–736. https://doi.org/10.1016/j.jpowsour.2006.03.074

    Article  CAS  Google Scholar 

  22. Tey JP, Careem MA, Yarmo MA, Arof AK (2016) Durian shell-based activated carbon electrode for EDLCs. Ionics 22:1209–1216. https://doi.org/10.1007/s11581-016-1640-2

    Article  CAS  Google Scholar 

  23. Hao F, Han F, Liang Y, Wang C, Yao Y (2018) Architectural design and fabrication approaches for solid-state batteries. MRS Bull 43:746–751. https://doi.org/10.1557/mrs.2018.211

    Article  CAS  Google Scholar 

  24. Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting polymers based electrochemical super capacitors—progress and prospects. Electrochim Acta 101:109–129. https://doi.org/10.1016/j.electacta.2012.09.116

    Article  CAS  Google Scholar 

  25. Dong X, Shen W, Gu J, Xiong L, Zhu Y, Li H, Shi J (2006) MnO2-embedded-in-mesoporouscarbon-wall structure for use as electrochemical capacitors. J Phys Chem B 110:6015–6019. https://doi.org/10.1021/jp056754n

    Article  CAS  Google Scholar 

  26. Chodankar NR, Pham HD, Nanjundan AK, Fernando JFS, Jayaramulu K, Golberg D, Han K, Dubal DP (2020) True meaning of pseudo capacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Nano Micro Small. https://doi.org/10.1002/small.202002806

    Article  Google Scholar 

  27. Huang Y, Tao J, Meng W, Zhu M, Huang Y, Fu GY, Zhi C (2015) Super high rate stretchable polypyrrole based supercapacitors with excellent cycling stability. Nano Energy 11:518–525. https://doi.org/10.1016/j.nanoen.2014.10.031

    Article  CAS  Google Scholar 

  28. Gupta A, Tripathi SK (2013) Effect of anionic size of PMMA based polymer gel electrolytes for redox capacitor. Int J Engi Res and Appl 3(1):1908–1911

    Google Scholar 

  29. Yu H, Wu J, Fan L, Lin Y, Xu K, Tang Z, Cheng C, Tang S, Lin J, Huang M, Lan Z (2012) A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor. J Power Sources 198:402–407. https://doi.org/10.1016/j.jpowsour.2011.09.110

    Article  CAS  Google Scholar 

  30. Wang W, Guo S, Penchev M, Ruiz I, Bozhilov KN, Yan D, Ozkan M, Ozkan CS (2013) Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2:294–303. https://doi.org/10.1016/j.nanoen.2012.10.001

    Article  CAS  Google Scholar 

  31. Harankahawa N, Weerasinghe S, Vidanapathirana K, Perera K (2017) Investigation of a pseudo capacitor with polyacrylonitrile based gel polymer electrolyte. J Electrochem Sci Technol 8:107–114. https://doi.org/10.5229/JECST.2017.8.2.107

    Article  CAS  Google Scholar 

  32. Palaniappan S, Sydulu SB, Prasanna TL, Srinivas P (2010) High-temperature oxidation of aniline to highly ordered polyaniline—sulfate salt with a nano fiber morphology and its use as electrode materials in symmetric Super capacitors. J Appl Polym Sci 120:780–788. https://doi.org/10.1002/app.33091

    Article  CAS  Google Scholar 

  33. Hashmi SA, Latham RJ, Linford RG, Schlindwein WS (1998) Conducting polymer based electrochemical redox super capacitors using proton and lithium ion conducting polymer electrolytes. Polym Int 47:28–33. https://doi.org/10.1002/(SICI)1097-0126(199809)

    Article  CAS  Google Scholar 

  34. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950

    Article  CAS  Google Scholar 

  35. Snook GA, Peng C, Fray DJ, Chen GZ (2007) Achieving high electrode specific capacitance with materials of low mass specific capacitance: potentiostatically grown thick micro-nanoporous PEDOT films. Electrochem Commun 9:83–88. https://doi.org/10.1016/j.elecom.2006.08.037

    Article  CAS  Google Scholar 

  36. Asmara SN, Kufian MZ, Majid SR, Arof AK (2011) Preparation and characterization of magnesium ion gel polymer electrolytes for application in electrical double layer capacitors. Electrochim Acta 57:91–97. https://doi.org/10.1016/j.electacta.2011.06.045

    Article  CAS  Google Scholar 

  37. Pandey GP, Rastogi AC (2012) Solid-state supercapacitors based on pulse polymerized poly(3,4-ethylenedioxythiophene) electrodes and ionic liquid gel polymer electrolyte. J Electrochem Soc 159:A1664–A1671. https://doi.org/10.1149/2.047210jes

    Article  CAS  Google Scholar 

  38. Hashmi SA, Upadhya HM (2002) Polypyrrole and poly(3-methylthiophene) based solid state resox super capacitors using ion conducting polymer electrolytes. Solid State Ionics 152–153:883–889. https://doi.org/10.1016/S0167-2738(02)00390-9

    Article  Google Scholar 

  39. Shin HS (2015) Degradation mechanisms of electrode/electrolyte interfaces in Li-ion batteries. Dissertation. University of Michigan, Ann Arbor

    Google Scholar 

  40. Liu T, Finn L, Yu M, Wang H, Zhai T, Lu X, Tong Y, Li Y (2014) Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett 14:2522–2527. https://doi.org/10.1021/nl500255v

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Research Council Sri Lanka for financial assistance under the research grant NRC 17-006. Associated Speciality Rubbers (PVT) Ltd., Kegalle, Sri Lanka is acknowledged for providing rubber samples.

Funding

National Research Council Sri Lanka—NRC 17-006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Perera.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajapaksha, H.G.N., Perera, K.S. & Vidanapathurana, K.P. Novel study on a safe, low-cost natural rubber: Mg-based solid polymer electrolyte for energy storage. J Rubber Res 24, 651–658 (2021). https://doi.org/10.1007/s42464-021-00132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-021-00132-5

Keywords

Navigation