Skip to main content
Log in

The role of model fatty acid and protein on thermal aging and ozone resistance of peroxide vulcanized natural rubber

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Natural rubber (NR) contains cis-1,4-polyisoprene and many kinds of non-rubber components, e.g., proteins, lipids and phospholipids, which are believed to affect the properties of NR. Oxidative degradation is one of the problems for rubber performance, which shorten the service life of the product. To overcome this problem, the influence of fatty acids and proteins on the cure properties, heat-ageing behaviours, and ozone resistance of NR vulcanizates were investigated. The peroxide vulcanization was chosen to avoid the effect of essential fatty acid and proteins. The purified NR, deproteinized NR (DPNR) and lipids-removed NR (LRNR) were mixed with model fatty acid (stearic acid) and amino acid (alanine). It was found that the cure behaviour of these mixed samples showed almost the same trend. After removing proteins, the rate of oxidative degradation was faster than that of the lipid-removal samples. Lower lipid content would result in less oxidative degradation of the rubber. These findings can infer that the endogenous proteins in NR act as natural antioxidants, while the endogenous lipids are pro-oxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vaysse L, Bonfils F, Sainte-Beuve J, Cartault M (2012) Natural rubber. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 281–293. https://doi.org/10.1016/B978-0-444-53349-4.00267-3

    Chapter  Google Scholar 

  2. Murniati R, Sutisna WE, Rokhmat M, Iskandar F, Abdullah M (2017) Natural rubber nanocomposite as human-tissue-mimicking materials for replacement cadaver in medical surgical practice. ProcEng 170:101–107. https://doi.org/10.1016/j.proeng.2017.03.019

    Article  CAS  Google Scholar 

  3. Furuya M, Shimono N, Okamoto M (2017) Fabrication of biocomposites composed of natural rubber latex and bone tissue derived from MC3T3-E1 mouse preosteoblastic cells. Nanocomposites 3(2):76–83. https://doi.org/10.1080/20550324.2017.1352111

    Article  CAS  Google Scholar 

  4. Mohammadi H, Morovati V, Poshtan E, Dargazany R (2020) Understanding decay functions and their contribution in modelling of thermal-induced aging of crosslinked polymers. PolymDegrad Stab 175:109108. https://doi.org/10.1016/j.polymdegradstab.2020.109108

    Article  CAS  Google Scholar 

  5. Celina MC (2013) Review of polymer oxidation and its relationship with materials performance and lifetime prediction. PolymDegrad Stab 98(12):2419–2429. https://doi.org/10.1016/j.polymdegradstab.2013.06.024

    Article  CAS  Google Scholar 

  6. Li G-Y, Koenig J (2005) A review of rubber oxidation. Rubber ChemTechnol 78:355–390. https://doi.org/10.5254/1.3547888

    Article  CAS  Google Scholar 

  7. Zhang B-L, Chen M, Ao N-J, Deng W-Y, Liu H-L (2004) Study on hot air aging and thermooxidative degradation of peroxide prevulcanized natural rubber latex film. J ApplPolymSci 92(5):3196–3200. https://doi.org/10.1002/app.20313

    Article  CAS  Google Scholar 

  8. Čulin J, Gembarovski D, Andreis M, Veksli Z, Marinović T (2000) Effect of thermal oxidative ageing on the morphology of natural rubber networks as viewed by ESR. PolymInt 49(8):845–852. https://doi.org/10.1002/1097-0126(200008)49:8%3c845::AID-PI465%3e3.0.CO;2-O

    Article  Google Scholar 

  9. Mei C, Yong-Zhou W, Guang L, Xiao-Ping W (2012) Effects of different drying methods on the microstructure and thermal oxidative aging resistance of natural rubber. J ApplPolymSci 126(6):1808–1813. https://doi.org/10.1002/app.34300

    Article  CAS  Google Scholar 

  10. Samsuri AB, Abdullahi AA (2017) Degradation of natural rubber and synthetic elastomers. Reference module in materials science and materials engineering. Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.09212-2

    Chapter  Google Scholar 

  11. Fo G, Chazeau L, Chenal J-M, Schach R (2019) About thermo-oxidative ageing at moderate temperature of conventionally vulcanized natural rubber. PolymDegrad Stab 161:74–84. https://doi.org/10.1016/j.polymdegradstab.2018.12.029

    Article  CAS  Google Scholar 

  12. Chandrasekaran VC (2010) Service life of rubber-lined chemical equipment. Rubber as a construction material for corrosion protection. Wiley, pp 235–248. https://doi.org/10.1002/9780470893197.ch15

    Chapter  Google Scholar 

  13. Lee YH, Cho M, Nam J-D, Lee Y (2018) Effect of ZnO particle sizes on thermal aging behaviour of natural rubber vulcanizates. PolymDegrad Stab 148:50–55. https://doi.org/10.1016/j.polymdegradstab.2018.01.004

    Article  CAS  Google Scholar 

  14. Bonfils F, Laigneau JC, Sylla S, Beuve JS (2001) DSC valuation of PRI of raw natural rubber. J ApplPolymSci 79(13):2354–2359. https://doi.org/10.1002/1097-4628(20010328)79:13%3c2354::AID-APP1044%3e3.0.CO;2-S

    Article  CAS  Google Scholar 

  15. Nie S, Lacayo-Pineda J, Willenbacher N, Wilhelm M (2019) Aging of natural rubber studied via Fourier-transform rheology and double quantum NMR to correlate local chain dynamics with macroscopic mechanical response. Polymer 181:121804. https://doi.org/10.1016/j.polymer.2019.121804

    Article  CAS  Google Scholar 

  16. Nun-anan P, Wisunthorn S, Pichaiyut S, Nathaworn CD, Nakason C (2020) Influence of non-rubber components on properties of unvulcanized natural rubber. PolymAdvTechnol 31(1):44–59. https://doi.org/10.1002/pat.4746

    Article  CAS  Google Scholar 

  17. Sriring M, Nimpaiboon A, Kumarn S, Takahara A, Sakdapipanich J (2020) Enhancing viscoelastic and mechanical performances of natural rubber through variation of large and small rubber particle combinations. Polym Test 81:106225. https://doi.org/10.1016/j.polymertesting.2019.106225

    Article  CAS  Google Scholar 

  18. Amnuaypornsri S, Sakdapipanich J, Toki S, Hsiao BS, Ichikawa N, Tanaka Y (2008) Strain-induced crystallization of natural rubber: effect of proteins and phospholipids. Rubber ChemTechnol 81(5):753–766. https://doi.org/10.5254/1.3548230

    Article  CAS  Google Scholar 

  19. Zhou Y, Kosugi K, Yamamoto Y, Kawahara S (2017) Effect of non-rubber components on the mechanical properties of natural rubber. PolymAdvTechnol 28(2):159–165. https://doi.org/10.1002/pat.3870

    Article  CAS  Google Scholar 

  20. Tuampoemsab S, Sakdapipanich J, Tanaka Y (2007) Influence of some non-rubber components on aging behavior of purified natural rubber. RubberChemTechnol 80(1):159–168. https://doi.org/10.5254/1.3548163

    Article  CAS  Google Scholar 

  21. Tuampoemsab S, Sakdapipanich J (2007) Role of naturally occurring lipids and proteins on thermal aging behaviour of purified natural rubber. KautschGummiKunstst 60(12):678–684

    CAS  Google Scholar 

  22. Tuampoemsab S (2013) Influence of amino acids on anti-oxidative properties of green natural rubber and natural rubber compound. Adv Mater Res 747:664–667

    Article  CAS  Google Scholar 

  23. Lhamo D, McMahan C (2017) Effect of protein addition on properties of guayule natural rubber. RubberChemTechnol 90(2):387–404. https://doi.org/10.5254/rct.17.83746

    Article  CAS  Google Scholar 

  24. Kongkaew C, Intiya W, Loykulnant S, Sae-oui P (2017) Effect of protein crosslinking by Maillard reaction on natural rubber properties. KautschGummiKunstst 70:37–41

    CAS  Google Scholar 

  25. Wei Y-C, Liu G-X, Zhang H-F, Zhao F, Luo M-C, Liao S (2019) Non-rubber components tuning mechanical properties of natural rubber from vulcanization kinetics. Polymer 183:121911. https://doi.org/10.1016/j.polymer.2019.121911

    Article  CAS  Google Scholar 

  26. Junkong P, Morimoto R, Miyaji K, Tohsan A, Sakaki Y, Ikeda Y (2020) Effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes. RSC Adv 10(8):4772–4785. https://doi.org/10.1039/C9RA10358A

    Article  CAS  Google Scholar 

  27. Wei Y-C, Liu G-X, Zhang L, Xu W-Z, Liao S, Luo M-C (2020) Mimicking the mechanical robustness of natural rubber based on a sacrificial network constructed by phospholipids. ACS Appl Mater Interfaces 12(12):14468–14475. https://doi.org/10.1021/acsami.0c01994

    Article  CAS  Google Scholar 

  28. Kruželák JN, Sýkora R, Hudec I (2014) Peroxide vulcanization of natural rubber. Part I: effect of temperature and peroxide concentration. J PolymEng. https://doi.org/10.1515/polyeng-2014-0034

    Article  Google Scholar 

  29. Dluzneski PR (2001) Peroxide vulcanization of elastomers. Rubber ChemTechnol 74(3):451–492. https://doi.org/10.5254/1.3547647

    Article  CAS  Google Scholar 

  30. Hasma H (1991) Lipids associated with rubber particles and their possible role in mechanical stability of latex concentrates. J Rubber Res 6(2):105–114

    CAS  Google Scholar 

  31. Liengprayoon S, Chaiyut J, Sriroth K, Fdr B, Jrm S-B, Dubreucq E, Vaysse L (2013) Lipid compositions of latex and sheet rubber from Hevea brasiliensis depend on clonal origin. Eur J Lipid SciTechnol 115(9):1021–1031. https://doi.org/10.1002/ejlt.201300023

    Article  CAS  Google Scholar 

  32. Brzozowska J, Hanower P, Chezeau R (1974) Free amino acids of Hevea brasiliensis latex. Experientia 30(8):894–896. https://doi.org/10.1007/BF01938345

    Article  CAS  Google Scholar 

  33. Yunyongwattanakorn J, Tanaka Y, Sakdapipanich J, Wongsasutthikul V (2008) Highly-purified natural rubber by saponification of latex: analysis of residual proteins in saponified natural rubber. RubberChemTechnol 81(1):121–137. https://doi.org/10.5254/1.3548192

    Article  CAS  Google Scholar 

  34. Nawamawat K, Sakdapipanich JT, Ho CC (2010) Effect of deproteinized methods on the proteins and properties of natural rubber latex during storage. MacromolSymp 288(1):95–103. https://doi.org/10.1002/masy.201050212

    Article  CAS  Google Scholar 

  35. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J BiolChem 226(1):497–509

    CAS  Google Scholar 

  36. Sakdapipanich J, Insom K, Phupewkeaw N (2007) Composition of color substances of Hevea brasiliensis natural rubber. RubberChemTechnol 80(2):212–230. https://doi.org/10.5254/1.3539403

    Article  CAS  Google Scholar 

  37. Sriring M, Nimpaiboon A, Kumarn S, Sirisinha C, Sakdapipanich J, Toki S (2018) Viscoelastic and mechanical properties of large- and small-particle natural rubber before and after vulcanization. Polym Test 70:127–134. https://doi.org/10.1016/j.polymertesting.2018.06.026

    Article  CAS  Google Scholar 

  38. John FP (1953) Principles of polymer chemistry, 1st edn. Cornell University Press, New York, p 29

    Google Scholar 

  39. Flory PJ (1950) Statistical mechanics of swelling of network structures. J ChemPhys 18:108–111. https://doi.org/10.1063/1.1747424

    Article  CAS  Google Scholar 

  40. Smitthipong W, Tantatherdtam R, Rungsanthien K, Suwanruji P, Sriroth K, Radabutra S, Thanawan S, Vallat M-F, Nardin M, Mougin K, Chollakup R (2013) Effect of non-rubber components on properties of sulphur crosslinked natural rubbers. Adv Mater Res 844:345–348

    Article  Google Scholar 

  41. Arnold AR, Evans P (1991) Role of fatty acids in autoxidation of deproteinized natural rubber. J Nat Rubber Res 6:75

    CAS  Google Scholar 

  42. Tuampoemsab S, Rattanapan A, Pakeyangkoon P (2014) Antagonism of natural anti- and pro-oxidants in synthetic polyisoprene rubber vulcanizates. Adv Mater Res 979:159–162

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Royal Golden Jubilee for PhD. Program, and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research and Innovation. Sincere appreciation is extended to the Thai Rubber Latex Group Public Co., Ltd. for supporting NR latex.

Funding

This work was supported by the Royal Golden Jubilee PhD. Program [grant numbers PhD/0150/2560], Ministry of Higher Education, Science, Research and Innovation.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Jitladda Sakdapipanich.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payungwong, N., Tuampoemsab, S., Rojruthai, P. et al. The role of model fatty acid and protein on thermal aging and ozone resistance of peroxide vulcanized natural rubber. J Rubber Res 24, 543–553 (2021). https://doi.org/10.1007/s42464-021-00100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-021-00100-z

Keywords

Navigation