Skip to main content

Advertisement

Log in

Optimization of a protein extraction method from natural rubber sheets made of Hevea brasiliensis latex

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

A method to extract proteins from natural rubber (NR) samples has been developed to characterize the protein composition of NR by SDS-PAGE electrophoresis. While the incubation of NR pieces in aqueous buffers did not provide satisfactory results (no protein bands detected by SDS-PAGE), the solubilization of NR pieces in an organic solvent, prior to centrifugation and protein extraction from the obtained pellet, was found efficient to highlight protein bands by SDS-PAGE. Pure cyclohexane was used to solubilize NR pieces and resulted in a low share of nitrogen in the pellet (29%). The addition of 10% (v/v) ethanol to cyclohexane allowed to significantly increase this share to 73% and to detect 13 protein bands by SDS-PAGE. The molecular weights of the four most intense bands suggest the presence in NR of the following proteins: rubber elongation factor, small rubber particle protein, hevamine, and β-1-3 glucanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADS:

Air-dried sheet

CV:

Constant viscosity

FT-IR:

Fourier transform infrared

NR:

Natural rubber

PBS:

Phosphate-buffered saline

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

SMR:

Standard Malaysian rubber

STR:

Standard Thai rubber

TEM:

Transmission electron microscope

THF:

Tetrahydrofuran

TSR:

Technically specified rubber

USS:

Unsmoked sheet

References

  1. Alam B, Das G, Raj S, Roy S, Pal TK, Dey SK (2003) Studies on yield and biochemical sub-components of latex of rubber trees (Hevea brasiliensis) with a special reference to the impact of low temperature in a non-optimal environment. J Rubber Res 6:241–257

    CAS  Google Scholar 

  2. Alenius H, Mäkinen-Kiljunen S, Turjanmaa K, Palosuo T, Reunala T (1994) Allergen and protein content of latex gloves. Ann Allergy 73:315–320

    CAS  Google Scholar 

  3. Allen PW, Bristow GM (1963) The gel phase in natural rubber. Rubber Chem Technol 7:603–615. https://doi.org/10.1002/app.1963.070070217

    Article  CAS  Google Scholar 

  4. Archer BL (1976) Hevamine: a crystalline basic protein from Hevea brasiliensis latex. Phytochemistry 15:297–300. https://doi.org/10.1016/S0031-9422(00)89007-X

    Article  CAS  Google Scholar 

  5. Archer BL (1960) The proteins of Hevea brasiliensis latex. 4. Isolation and characterization of crystalline hevein. Biochem J 75:236–240

    Article  CAS  Google Scholar 

  6. Arreguín B, Lara P, Rodríguez R (1988) Comparative study of electrophoretic patterns of latex proteins from clones of Hevea brasiliensis. Electrophoresis 9:323–326. https://doi.org/10.1002/elps.1150090707

    Article  Google Scholar 

  7. Barbas C, Casto M, Herrera E (1998) A simplified measurement of protein in natural latex. Allergy 53:720–722. https://doi.org/10.1111/j.1398-9995.1998.tb03964.x

    Article  CAS  Google Scholar 

  8. Baur X, Chen Z, Raulf-Heimsoth M, Degens P (1997) Protein and allergen content of various natural latex articles. Allergy 52:661–664. https://doi.org/10.1111/j.1398-9995.1997.tb01046.x

    Article  CAS  Google Scholar 

  9. Bellacicco S, Prades A, Char C, Vaysse L, Granet F, Lacote R, Gohet E, Flori A, Sainte-Beuve J, Bonfils F (2018) The sugar and polyol composition of Hevea brasiliensis latex depends on the clonal origin of the tree. J Rubber Res 21:224–235

    Article  CAS  Google Scholar 

  10. Berthelot K, Lecomte S, Estevez Y, Peruch F (2014) Hevea brasiliensis REF (Hevb1) and SRPP (Hevb3): an overview of possible functions of rubber particle proteins. Biochimie 106:1–9. https://doi.org/10.1016/j.bbapap.2013.10.017

    Article  CAS  Google Scholar 

  11. Bottier C (2020) Biochemical composition of Hevea brasiliensis latex: a focus on the protein, lipid, carbohydrate and mineral contents. In: Robert N (ed) Advances in botanical research. Latex, laticifers and their molecular components—from functions to possible applications. Elsevier Ltd, New York, pp 201–237. https://doi.org/10.1016/bs.abr.2019.11.003

    Chapter  Google Scholar 

  12. Churngchow N, Suntaro A, Wititsuwannakul R (1995) Beta-1,3-glucanase isozymes from the latex of Hevea brasiliensis. Phytochemistry 39:505–509. https://doi.org/10.1016/0031-9422(95)00974-C

    Article  CAS  Google Scholar 

  13. Cornish K, Bates GM, Slutzky JL, Meleshchuk A, Xie W, Sellers K, Mathias R (2019) Extractable protein levels in latex products, and their associated risks, emphasizing American dentistry. Biol Med 11:1–7. https://doi.org/10.4172/0974-8369.1000456

    Article  Google Scholar 

  14. Dennis MS, Light DR (1989) Rubber elongation factor from H. brasiliensis. J Biol Chem 264:18608–18617

    Article  CAS  Google Scholar 

  15. Fisher BR, Tomazic VJ, Withrow TJ, Matesic LE (1993) Variations in latex protein profiles. Clin Mater 14:199–205. https://doi.org/10.1016/0267-6605(93)90003-P

    Article  CAS  Google Scholar 

  16. Galiani PD, Martins MA, Gonc PDS, McMahan CM, Henrique L, Mattoso C (2011) Seasonal and clonal variations in technological and thermal properties of raw Hevea natural rubber. J Appl Polym Sci 122:2749–2755. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  17. Gan SN, Ting KF (1993) Effect of treating latex with some metal ions on storage hardening of natural rubber. Polymer (Guildf) 34:2142–2147

  18. Grechanovskii VA, Dmitrieva IP, Zaitsev NB (1985) Separation and preliminary characterisation of the protein component from commercial varieties of hevea rubber. Int Polym Sci Technol 14:15–18

    Google Scholar 

  19. Hasma H, Othman AB (1990) Role of some non rubber constituents on thermal oxidative ageing of natural rubber. J Nat Rubber Res 5:1–8

    CAS  Google Scholar 

  20. Hasma H, Subramaniam A (1986) Composition of lipids in latex of Hevea brasiliensis clone RRIM501. J Nat Rubber Res 1:30–40

    CAS  Google Scholar 

  21. IRSG (2018) Quaterly Statistics by the International Rubber Study Group

  22. Jacob J-L, D’Auzac J, Prevôt J-C (1993) The composition of natural latex from Hevea brasiliensis. Clin Rev Allergy 11:325–337

    CAS  Google Scholar 

  23. Kalapat N, Watthanachote L, Nipithakul T (2009) Extraction and characterization of proteins from skim rubber. Kasetsart J 325:319–325

    Google Scholar 

  24. Karino T, Ikeda Y, Yasuda Y, Kohjiya S, Shibayama M (2007) Nonuniformity in natural rubber as revealed by small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscopy. Biomacromol 8:693–699. https://doi.org/10.1021/bm060983d

    Article  CAS  Google Scholar 

  25. Kemp AR, Peters H (1939) Sol and gel in hevea latex and crude rubber influence. J Phys Chem 43:923–939. https://doi.org/10.1021/j150394a010

    Article  CAS  Google Scholar 

  26. Kemp AR, Straitiff WG (1940) Hevea latex: effect of proteins and electrolytes on colloidal behavior. J Phys Chem 44:788–808. https://doi.org/10.1021/j150402a010

    Article  CAS  Google Scholar 

  27. Le Roux Y, Ehabe E, Sainte-Beuve J, Nkengafac J, Nkeng J, Ngolemasango F, Gobina S (2000) Seasonal and clonal variations in the latex and raw rubber of Hevea brasiliensis. J Rubber Res 3:142–156

    Google Scholar 

  28. Li S-D, Yu H-P, Peng Z, Li P-S (1998) Study on variation of structure and properties of natural rubber during accelerated storage. J Appl Polym Sci 70:1779–1783

    Article  CAS  Google Scholar 

  29. Liengprayoon S, Bonfils F, Sainte-Beuve J, Sriroth K, Dubreucq E, Vaysse L (2008) Development of a new procedure for lipid extraction from Hevea brasiliensis natural rubber. Eur J Lipid Sci Technol 110:563–569. https://doi.org/10.1002/ejlt.200700287

    Article  CAS  Google Scholar 

  30. Liengprayoon S, Chaiyut J, Sriroth K, Bonfils F, Sainte-Beuve J, Dubreucq E, Vaysse L (2013) Lipid compositions of latex and sheet rubber from Hevea brasiliensis depend on clonal origin. Eur J Lipid Sci Technol 115:1021–1031. https://doi.org/10.1002/ejlt.201300023

    Article  CAS  Google Scholar 

  31. Lotti C, Moreno RMB, Gonçalves PS, Bhattacharya S (2012) Extensional rheology of raw natural rubber from new clones of Hevea brasiliensis. Polym Eng Sci 52:139–148. https://doi.org/10.1002/pen

    Article  CAS  Google Scholar 

  32. McMahan C, Kostyal D, Lhamo D, Cornish K (2015) Protein influences on guayule and Hevea natural rubber sol and gel. J Appl Polym Sci 132:42051. https://doi.org/10.1002/app.42051

    Article  CAS  Google Scholar 

  33. Monadjemi SMA, McMahan CM, Cornish K (2016) Effect of non-rubber constituents on guayule and Hevea rubber intrinsic properties. J Res Updat Polym Sci 5:87–96

    Article  CAS  Google Scholar 

  34. Moreno RMB, Ferreira M, Gonçalves PDS, Mattoso LHC (2005) Technological properties of latex and natural rubber of Hevea brasiliensis clones. Sci Agric 62:122–126. https://doi.org/10.1590/S0103-90162005000200005

    Article  Google Scholar 

  35. Ng MX, Tham TC, Ong SP, Law CL (2015) Drying kinetics of technical specified rubber. Inf Process Agric 2:64–71. https://doi.org/10.1016/j.inpa.2015.05.001

    Article  Google Scholar 

  36. Ngolemasango F, Ehabe E, Aymard C, Sainte-Beuve J, Nkouonkam B, Bonfils F (2003) Role of short polyisoprene chains in storage hardening of natural rubber. Polym Int 52:1365–1369. https://doi.org/10.1002/pi.1225

    Article  CAS  Google Scholar 

  37. Oh SK, Kang H, Shin DH, Yang J, Chow KS, Yeang HY, Wagner B, Breiteneder H, Han KH (1999) Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J Biol Chem 274:17132–17138

    Article  CAS  Google Scholar 

  38. Pace CN, Treviño S, Prabhakaran E, Scholtz JM (2004) Protein structure, stability and solubility in water and other solvents. Philos Trans R Soc Lond B Biol Sci 359:1225–1234. https://doi.org/10.1098/rstb.2004.1500

    Article  CAS  Google Scholar 

  39. Paemanee A, Wikan N, Roytrakul S, Smith DR (2016) Application of GelC-MS / MS to proteomic profiling of chikungunya virus infection: preparation of peptides for analysis. In: Chu JJH, Ang SK (eds) Chikungunya virus, methods and protocols. Humana Press, New York, pp 179–193

    Chapter  Google Scholar 

  40. Ratnayake U (2002) Natural rubber latex proteins and their allergy. Bull Rubber Res Inst Sri Lanka 43:14–22

    Google Scholar 

  41. Ratnayake U, Seneviratne W, Rohanadeepa V, Priyanka U, Prasad A (2008) Extractable proteins in natural rubber. Bull Rubber Res Inst Sri Lanka 49:29–38

    Google Scholar 

  42. Raulf M, Rihs HP (2017) Latex allergens: source of sensitization and single allergens. In: Kleine-Tebbe J, Jakob T (eds) Molecular allergy diagnostics. Springer, Cham, pp 459–470

  43. Rippel MM, Leite CAP, Lee LT, Galembeck F (2005) Direct imaging and elemental mapping of microgels in natural rubber particles. Colloid Polym Sci 283:570–574. https://doi.org/10.1007/s00396-004-1187-z

    Article  CAS  Google Scholar 

  44. Rogero S (2003) Extractable proteins from irradiated field natural rubber latex. Radiat Phys Chem 67:501–503. https://doi.org/10.1016/S0969-806X(03)00093-8

    Article  CAS  Google Scholar 

  45. Rolere S, Bottier C, Vaysse L, Sainte-Beuve J, Bonfils F (2016) Characterisation of macrogel composition from industrial natural rubber samples: influence of proteins on the macrogel crosslink density. Express Polym Lett 10:408–419. https://doi.org/10.3144/expresspolymlett.2016.38

    Article  CAS  Google Scholar 

  46. Rolere S, Cazevieille C, Sainte-Beuve J, Bonfils F (2016) New insights on natural rubber microgel structure thanks to a new method for microaggregates extraction. Eur Polym J 80:117–125. https://doi.org/10.1016/j.eurpolymj.2016.05.008

    Article  CAS  Google Scholar 

  47. Rolere S, Liengprayoon S, Vaysse L, Sainte-Beuve J, Bonfils F (2015) Investigating natural rubber composition with Fourier Transform Infrared (FT-IR) spectroscopy: a rapid and non-destructive method to determine both protein and lipid contents simultaneously. Polym Test 43:83–93. https://doi.org/10.1016/j.polymertesting.2015.02.011

    Article  CAS  Google Scholar 

  48. Sainoi T, Sdoodee S, Lacote R, Gohet E (2017) Low frequency tapping systems applied to young-tapped trees of Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. in Southern Thailand. Agric Nat Resour 51:268–272. https://doi.org/10.1016/j.anres.2017.03.001

    Article  Google Scholar 

  49. Singh AP, Wi SG, Chung GC, Kim YS, Kang H (2003) The micromorphology and protein characterization of rubber particles in Ficus carica, Ficus benghalensis and Hevea brasiliensis. J Exp Bot 54:985–992. https://doi.org/10.1093/jxb/erg107

    Article  CAS  Google Scholar 

  50. Srisomboon S, Wadeesirisak K, Sauvage F-X, Rattanaporn K, Vaysse L, Bonfils F, Sainte-Beuve J, Liengprayoon S, Bottier C (2015) Optimization of protein extraction from diferent latex samples of hevea brasiliensis. Thaksin Univ J 17:26–34

    Google Scholar 

  51. Subroto T, Koningsveld GA, Schreuder H, Soedjanaatmadja UMS (1996) Chitinase and beta-1,3 glucanase in the lutoid-body fraction of Hevea Latex. Phytochemistry 43:29–37. https://doi.org/10.1016/0031-9422(96)00196-3

    Article  CAS  Google Scholar 

  52. Tangpakdee J, Tanaka Y (1997) Characterization of sol and gel in hevea natural rubber. Rubber Chem Technol 70:707–713. https://doi.org/10.5254/1.3538454

    Article  CAS  Google Scholar 

  53. Tarachiwin L, Sakdapipanich J, Ute K, Kitayama T, Bamba T, Fukusaki E-I, Kobayashi A, Tanaka Y (2005) Structural characterization of alpha-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments. Biomacromol 6:1851–1857. https://doi.org/10.1021/bm058003x

    Article  CAS  Google Scholar 

  54. Tarachiwin L, Sakdapipanich J, Ute K, Kitayama T, Tanaka Y (2005) Structural characterization of alpha-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Biomacromol 6:1858–1863. https://doi.org/10.1021/bm058004p

    Article  CAS  Google Scholar 

  55. Tomazic-Jezic VJ, Lucas AD, Lamanna A, Stratmeyer ME (1999) Quantiication of naturel rubber latex proteins: evaluation of various protein measurement methods. Toxicol Meth 9:153–164. https://doi.org/10.1080/105172399242663

  56. Trinidad N, Gallego Z, Lucía M, Láinez Á (2019) Effect of the phenological stage in the natural rubber latex properties. J Polym Environ 27:364–371. https://doi.org/10.1007/s10924-018-1337-x

    Article  CAS  Google Scholar 

  57. Vaysse L, Bonfils F, Sainte-Beuve J, Cartault M (2012) Natural rubber. Polym Sci Compr Ref. https://doi.org/10.1016/B978-0-444-53349-4.00267-3

    Article  Google Scholar 

  58. Vaysse L, Sathornluck S, Bottier C, Liengprayoon S, Char C, Bonfils F, Chotiphan R, Lacote R, Gay F (2017) Effect of fertilization and stimulation of hevea brasiliensis trees on mineral compositions and properties of produced latex and rubber. In: Proceedings of international rubber conference. Jakarta, pp 358–369. https://ejournal.puslitkaret.co.id/index.php/proc/article/view/490

  59. Wadeesirisak K, Castano S, Caudy N, Vaysse L, Bonfils F, Peruch F, Rattanaporn K, Liengprayoon S, Roytrakul S, Lecomte S, Bottier C (2017) Study of the interactions of a major rubber particle protein (REF1) with synthetic phospholipids in Langmuir monolayers. In: Proceedings of international rubber conference. Jakarta, pp. 370–386. https://ejournal.puslitkaret.co.id/index.php/proc/article/view/494

  60. Wang X, Shi M, Wang D, Chen Y, Cai F, Zhang S, Wang L, Tong Z, Tian W-M (2013) Comparative proteomics of primary and secondary lutoids reveals that chitinase and glucanase play a crucial combined role in rubber particle aggregation in Hevea brasiliensis. J Proteome Res 12:5146–5159. https://doi.org/10.1021/pr400378c

    Article  CAS  Google Scholar 

  61. Wei Y-C, Liu G-X, Zhang H-F, Zhao F, Luo M-C (2019) Non-rubber components tuning mechanical properties of natural rubber from vulcanization kinetics. Polymer (Guildf) 183:121911. https://doi.org/10.1016/j.polymer.2019.121911

    Article  CAS  Google Scholar 

  62. Wisunthorn S, Chambon B, Sainte-Beuve J, Vaysse L (2015) Natural rubber quality starts at the smallholdings: farmers’ cup coagulum production in Southern Thailand. J Rubb Res 18:87–98

    Google Scholar 

  63. Wood DF, Cornish K (2000) Microstructure of purified rubber particles. Int J Plant Sci 161:435–445. https://doi.org/10.1086/314269

    Article  CAS  Google Scholar 

  64. Wu J, Qu W, Huang G, Wang S, Huang C, Liu H (2017) Super-resolution fluorescence imaging of spatial organization of proteins and lipids in natural rubber. Biomacromol 18:1705–1712. https://doi.org/10.1021/acs.biomac.6b01827

    Article  CAS  Google Scholar 

  65. Yeang HY, Arif SAM, Loke YH, Chew NP, Mohsin SM (2007) Electrophoretic characterisation of hevein. J Rubber Res 10:235–244

    CAS  Google Scholar 

  66. Yeang HY, Yip E, Hamzah S (1995) Characterization of Zone 1 and Zone 2 rubber particles in Hevea Brasiliensis latex. J Rubber Res 10:108–123

    Google Scholar 

  67. Yip E, Turjanmaa K, Ng KP, Mok KL (1994) Allergic responses and levels of extractable proteins in NR latex gloves and dry rubber products. J Nat Rubber Res 9:79–86

    CAS  Google Scholar 

  68. Yunginger JW, Jones RT, Fransway AF, Kelso JM, Warner MA, Hunt LW (1994) Extractable latex allergens and proteins disposable medical gloves and other rubber products. J Allergy Clin Immunol 93:836–842. https://doi.org/10.1016/0091-6749(94)90374-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the Graduate Program Scholarship from the Graduate School, Kasetsart University. Agropolis Foundation is thanked for the support to the creation of LipPolGreen-Asia platform in Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Bangkok. The authors thank Union Rubber Co. Ltd for providing latex in their plantation. This work was undertaken under the umbrella of Hevea Research Platform in Partnership (HRPP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kittipong Rattanaporn or Céline Bottier.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srisomboon, S., Wadeesirisak, K., Vaysse, L. et al. Optimization of a protein extraction method from natural rubber sheets made of Hevea brasiliensis latex. J Rubber Res 24, 27–39 (2021). https://doi.org/10.1007/s42464-020-00069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-020-00069-1

Keywords

Navigation