Skip to main content

Advertisement

Log in

A review of the feasibility of using crumb rubber derived from end-of-life tire as asphalt binder modifier

  • Review
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

The use of recycled crumb rubber (CR) in asphalt pavements could be an essential step towards ensuring a more sustainable future in addition to opening a new investment opportunity for global investors. Asphalt modifiers have the ability to enhance the performance of flexible pavements and contribute towards ensuring a more sustainable environment. The utilization of CR produced from end-of-life tires (ELTs) as an asphalt modifier has been shown to enhance asphalt performance with regard to high-temperature rutting and low-temperature thermal cracking due to the remarkable characteristics of the CR. This paper presents the findings of previous studies, including the grinding of ELTs to obtain crumb rubber, the technology employed in the process, and the physical and mechanical properties of the asphalt modifiers. Even though the present study focuses on the application of hot-mix asphalt (HMA), there are other methods, for instance, warm-mix asphalt (WMA), reclaimed asphalt pavement (RAP), and porous asphalt, that used CR as a modifier or as an additive in asphalt binders. A review of the literature suggests that most CR have a good performance and are suitable for use in the top paving layer to reduce noise as well as for other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mashaan NS et al (2014) A review on using crumb rubber in reinforcement of asphalt pavement. Sci World J. https://doi.org/10.1155/2014/214612

    Article  Google Scholar 

  2. Yildirim Y (2007) Polymer modified asphalt binders. Constr Build Mater 21(1):66–72

    Google Scholar 

  3. Zanzotto L, Kennepohl GJ (1996) Development of rubber and asphalt binders by depolymerization and devulcanization of scrap tires in asphalt. Transp Res Rec 1530(1):51–58

    CAS  Google Scholar 

  4. Presti DL (2013) Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review. Constr Build Mater 49:863–881

    Google Scholar 

  5. Neto SAD, Farias MM, Pais JC, Pereira PA, Sousa JB (2006) Influence of crumb rubber and digestion time on the asphalt rubber binders. Road Mater Pavement Des 7(2):131–148

    Google Scholar 

  6. Hong W, Li Q, Lv Z, Guan G, Xing G (2011) Preparation and properties of anion rubber-modified asphalt. In: 2011 International conference on materials for renewable energy and environment, vol 1, IEEE, pp. 932–935

  7. Kök BV, Çolak H (2011) Laboratory comparison of the crumb-rubber and SBS modified bitumen and hot mix asphalt. Constr Build Mater 25(8):3204–3212

    Google Scholar 

  8. Ghaly NF (2008) Effect of sulfur on the storage stability of tire rubber modified asphalt. World J Chem 3(2):42–50

    CAS  Google Scholar 

  9. Hernández Olivares F, Witoszek-Schultz B, Alonso-Fernández M, Benito-Moro C (2009) Rubber-modified hot-mix asphalt pavement by dry process. Int J Pavement Eng 10(4):277–288

    Google Scholar 

  10. Fontes LP, Trichês G, Pais JC, Pereira PA (2010) Evaluating permanent deformation in asphalt rubber mixtures. Constr Build Mater 24(7):1193–1200

    Google Scholar 

  11. Al-Ani TMA, Ahmed TY, Mahmood WM, Al-Ani SMA (2011) Using crumb of tyres in hot asphalt mixture as part of aggregate. ALRafdain Eng J 19(2):29–39

    Google Scholar 

  12. Moreno F, Rubio MC, Martinez-Echevarria MJ (2012) The mechanical performance of dry-process crumb rubber modified hot bituminous mixes: the influence of digestion time and crumb rubber percentage. Constr Build Mater 26(1):466–474. https://doi.org/10.1016/j.conbuildmat.2011.06.046

    Article  Google Scholar 

  13. Mashaan NS, Ali AH, Koting S, Karim MR (2013) Performance evaluation of crumb rubber modified stone mastic asphalt pavement in Malaysia. Adv Mater Sci Eng. https://doi.org/10.1155/2013/304676

    Article  Google Scholar 

  14. Hamad GS, Jaya RP, Hassan NA, Aziz MMA, Mohd Yusak MI (2014) Influences of crumb rubber size on hot mix asphalt mixtures. Dissertation, Universiti Teknologi Malaysia

  15. Chen M, Zheng J, Li F, Wu S, Lin J, Wan L (2015) Thermal performances of asphalt mixtures using recycled tyre rubber as mineral filler. Road Mater Pavement Des 16(2):379–391. https://doi.org/10.1080/14680629.2014.1002524

    Article  CAS  Google Scholar 

  16. Moreno-Navarro F, Rubio-Gámez MC, Jiménez Del Barco-Carrión A (2016) Tire crumb rubber effect on hot bituminous mixtures fatigue-cracking behaviour. J Civ Eng Manag 22(1):65–72

    Google Scholar 

  17. Wulandari PS, Tjandra D (2017) Use of crumb rubber as an additive in asphalt concrete mixture. Procedia Eng 171:1384–1389. https://doi.org/10.1016/j.proeng.2017.01.451

    Article  Google Scholar 

  18. Arabani M, Tahami SA, Hamedi GH (2018) Performance evaluation of dry process crumb rubber-modified asphalt mixtures with nanomaterial. Road Mater Pavement Des 19(5):1241–1258

    CAS  Google Scholar 

  19. Franesqui MA, Yepes J, García-González C, Gallego J (2019) Sustainable low-temperature asphalt mixtures with marginal porous volcanic aggregates and crumb rubber modified bitumen. J Clean Prod 207:44–56

    CAS  Google Scholar 

  20. Ržek L, Turk MR, Tušar M (2020) Increasing the rate of reclaimed asphalt in asphalt mixture by using alternative rejuvenator produced by tire pyrolysis. Constr Build Mater 232:117177

    Google Scholar 

  21. Thompson DC, Hoiberg AJ (eds) (1979) Bituminous materials: asphalt tars and pitches. Krieger Publishing Co., New York

    Google Scholar 

  22. Epps JA (1994) Uses of recycled rubber tires in highways, vol 198, Transportation Research Board

  23. Lo Presti D, Memon N, Grenfell J, Airey G (2014) alternative methodologies to evaluate storage stability of rubberised bitumens. CRC Press, Boca Raton

    Google Scholar 

  24. Kuennen T (2004) Asphalt rubber makes a quiet comeback. Better Roads Mag 74(5)

  25. Scofield LA (1989) The history, development, and performance of asphalt rubber at ADOT. Special Report, Report Number AZ-SP-8902, Arizona Department of Transportation, Materials Section, Phoenix, AZ

  26. Takal HB (1991) Advances in technology of asphalt paving materials containing used tire rubber. Tire Rubber Asphalt Pavements 1339:23

    Google Scholar 

  27. Baker TE, Allen TM, Jenkins DV, Mooney T, Pierce LM, Christie RA, Weston JT (2003) Evaluation of the use of scrap tires in transportation-related applications in the State of Washington. Washington State Department of Transportation, Washington, DC, 20(3)

  28. Othman Z, Hainin MR, Warid MNM, Idham MK, Kamarudin SNN (2018) Cup lump modified asphalt mixture along jalan Kuala Lumpur-Kuantan, daerah Temerloh, Pahang. In MATEC Web of Conferences, vol 250, EDP Sciences, p. 02007

  29. Ahmed ZAA (2016) Modification of asphalt binder with various percentages of crumb rubber in flexible pavement, Doctoral dissertation, Universiti Teknologi Malaysia

  30. Sousa JB (2005) Experiences with use of reclaimed rubber in asphalt within Europe. Birmingham: sn Rubber in Roads.

  31. Mavridou S, Oikonomou N, Kalofotias A (2010) Worldwide survey on best (and worse) practices concerning rubberized asphalt mixtures implementation (number of different cases, extent of application. Thessaloniki: EU-LIFE+ Environment Policy and Governance. ROADTIRE D 2:1–1

    Google Scholar 

  32. Cheng D, Hicks RG, Teesdale T (2011) Assessment of warm mix technologies for use with asphalt rubber paving applications. In: Transportation research board 90th annual meeting. Washington DC, pp 11–3599

  33. Antunes M, Baptista F, Eusébio MI, Costa MS, Valverde Miranda C (2000) Characterization of asphalt rubber mixtures for pavement rehabilitation projects in Portugal, Asphatl Rubber, Faro, Portugal, 2000

  34. Gallego J, Del Val MA, Tomas R (2000) Spanish experience with asphalt pavements modified with tire rubber. Asphalt Rubber, 2000

  35. Santagata FA, Canestrari F, Pasquini E (2007) Mechanical characterization of asphalt rubber-wet process. In: Proceedings of 4th International SIV Congress. Palermo. Italy

  36. Dasek O, Kudrna J, Kachtík J, Spies K (2012) Asphalt rubber in Czech Republic. Munich: sn Asphatl Rubber

  37. Nordgren T, Tykesson A (2012) Dense graded asphalt rubber in cold climate conditions. Munich: sn Asphalt Rubber

  38. Widyatmoko I, Elliot R (2007) A review of the use of crumb rubber modified asphalt worldwide. UK: Waste & Resources Action Programme (WRAP)

  39. Pinto A, Sousa J (2012) The first Brazilian experience with in situ field blend rubber asphalt. Munich: sn Asphalt Rubber, 2012

  40. Nourelhuda M, Ali G (2012) Asphalt-rubber pavement construction and performance: the Sudan experience. Munich: sn Asphalt Rubber, 2012

  41. Magalhães JH, Soares JB (2003) The effect of crumb rubber gradation and binder-rubber interaction time on the mechanical properties of asphalt-rubber mixtures (dry process). In: Asphalt Rubber Conference Papers

  42. Scott E (2016) End-of-life Tyre Report 2015. European Tyre & Rubber Manufacturers Association, 36.

  43. Bartolozzi I, Antunes I, Rizzi F (2012) The environmental impact assessment of asphalt rubber: life cycle assessment. In: Proceedings of the 5th asphalt rubber "roads of the future" international conference, Munich, Germany, pp. 23–26

  44. Antunes I, Way GB, Sousa J, Kaloush K (2006) The successful world wide use of asphalt rubber. In: 16th Convegno Nazionale SIIV, Cosenza, 2006a. Antunes I., Giuliani F., Sousa JB, "Chemical Modification of Asphalt Rubber with Polyphosphoric Acid" Asphalt Rubber 2006 Conference, San Diego

  45. ETRMA—European Tyre Rubber Manufacturers Association (2017) European tyre and rubber industry—Statistics. Accessed October 2019

  46. Torretta V, Rada EC, Ragazzi M, Trulli E, Istrate IA, Cioca LI (2015) Treatment and disposal of tyres: two EU approaches. A review. Waste Manag 45:152–160

    CAS  Google Scholar 

  47. Gomes TS, Neto GR, de Salles ACN, Visconte LLY, Pacheco EBAV (2019) End-of-life tire destination from a life cycle assessment perspective. In: New frontiers on life cycle assessment-theory and application, IntechOpen, London

  48. Farina A, Zanetti MC, Santagata E, Blengini GA (2017) Life cycle assessment applied to bituminous mixtures containing recycled materials: crumb rubber and reclaimed asphalt pavement. Resour Conserv Recycl 117:204–212

    Google Scholar 

  49. Xiao F, Amirkhanian SN, Shen J, Putman B (2009) Influences of crumb rubber size and type on reclaimed asphalt pavement (RAP) mixtures. Constr Build Mater 23(2):1028–1034

    Google Scholar 

  50. Lee SJ, Akisetty CK, Amirkhanian SN (2008) The effect of crumb rubber modifier (CRM) on the performance properties of rubberized binders in HMA pavements. Constr Build Mater 22(7):1368–1376

    Google Scholar 

  51. Jensen W, Abdelrahman M (2006) Use of crumb rubber in performance graded binder, Nebraska Department of Roads, Lincoln, NE, (No. SPR-01 (05) P585)

  52. Mohammad LN, Cooper SB Jr, Elseifi MA (2011) Characterization of HMA mixtures containing high reclaimed asphalt pavement content with crumb rubber additives. J Mater Civ Eng 23(11):1560–1568

    CAS  Google Scholar 

  53. Bahia HU, Davies R (1994) Effect of crumb rubber modifiers (CRM) on performance-related properties of asphalt binders. Asphalt Paving Technol 63:414–414

    CAS  Google Scholar 

  54. Navarro FJ, Partal P, Martınez-Boza F, Gallegos C (2004) Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumen's. Fuel 83(14–15):2041–2049

    CAS  Google Scholar 

  55. Rahman M (2004) Characterization of dry process crumb rubber modified asphalt mixtures, doctoral dissertation, University of Nottingham

  56. Shulman VL (2000) Tyre recycling after 2000: status and options. European Tyre Recycling Association, Paris, France

    Google Scholar 

  57. American Society for Testing and Materials (1996) D5603-96: classification of the type of ground rubber in terms of maximum particle size, size designation, and grades

  58. American Society for Testing and Materials (ASTM) (2009) ASTM D6114/D61144M: Standard specification for asphalt-rubber binder. West Conshohocken, PA, USA

    Google Scholar 

  59. Walsh I, Widyatmoko D (2009) The effect of crumb rubber in hot bitumen. 9th Annual international conference on sustainable aggregates, At Liverpool, UK. https://doi.org/10.13140/RG.2.1.3012.6168

  60. Plemons C (2013) Evaluation of the effect of crumb rubber properties on the performance of asphalt binder, Doctoral dissertation

  61. Memon NA (2011) Characterization of conventional and chemically dispersed crumb rubber modified bitumen and mixtures. Dissertation, University of Nottingham

  62. Oliver JW (1981) Modification of paving asphalts by digestion with scrap rubber. ARRB, Transportation Research Board

    Google Scholar 

  63. Roberts FL, Kandhal PS, Brown ER, Dunning RL (1989) Investigation and evaluation of ground tire rubber in hot mix asphalt. NCAT Report 89–3

  64. Griest WH, Caton JE (1983) Extraction of polycyclic aromatic hydrocarbons for quantitative analysis. Handb Polycycl Aromat Hydrocarb 1:95–148

    Google Scholar 

  65. Tommy E (2004) Technical and environmental properties of tire shreds focusing on ground engineering applications. Technical report, Lulea University of Technology, SE-917 87 Lulea, pp 53–83

  66. Lisi RD, Park JK, Stier JC (2004) Mitigating nutrient leaching with a sub-surface drainage layer of granulated tires. Waste Manag 24(8):831–839

    CAS  Google Scholar 

  67. Xie J, Yang Y, Lv S, Peng X, Zhang Y (2019) Investigation on preparation process and storage stability of modified asphalt binder by grafting activated crumb rubber. Materials 12(12):2014

    CAS  Google Scholar 

  68. Bahia HU, Zhai H (1998) A new method for the storage stability test of modified asphalt. Prep Am Chem Soc, Div Fuel Chem 43:1041–1045

    CAS  Google Scholar 

  69. Pérez-Lepe A, Martínez-Boza FJ, Gallegos C (2007) High temperature stability of different polymer-modified bitumen's: a rheological evaluation. J Appl Polym Sci 103(2):1166–1174

    Google Scholar 

  70. Presti DL, Airey G, Partal P (2012) Manufacturing terminal and field bitumen-tyre rubber blends: the importance of processing conditions. Procedia-Social Behav Sci 53:485–494

    Google Scholar 

  71. Cao W (2007) Study on properties of recycled tire rubber modified asphalt mixtures using dry process. Constr Build Mater 21(5):1011–1015

    Google Scholar 

  72. Hernández-Olivares F, Witoszek-Schultz B, Alonso-Fernández M, Benito-Moro C (2009) Rubber-modified hot-mix asphalt pavement by dry process. Int J Pavement Eng 10(4):277–288

    Google Scholar 

  73. Zaouai S, Tafraoui A, Makani A, Benmerioul F (2020) Hardened and transfer properties of self-compacting concretes containing pre-coated rubber aggregates with crushed dune sand. J Rubber Res 23(1):5–12

    CAS  Google Scholar 

  74. Tortum A, Çelik C, Aydin AC (2005) Determination of the optimum conditions for tire rubber in asphalt concrete. Build Environ 40(11):1492–1504

    Google Scholar 

  75. Zhou H, Holikatti S, Vacura P (2014) Caltrans use of scrap tires in asphalt rubber products: a comprehensive review. J Traffic Transport Eng (English Edition) 1(1):39–48

    Google Scholar 

  76. Caltrans (2006) Asphalt Rubber Usage Guide. S.L.: State of California Department of Transportation, Materials Engineering and Testing Services

  77. Crockford WW, Makunike D, Davison RR, Scullion T, Billiter TC (1995) Recycling crumb rubber modified asphalt pavements. Texas Department of Transportation Report

  78. Bressi S, Fiorentini N, Huang J, Losa M (2019) crumb rubber modifier in road asphalt pavements: state of the art and statistics. Coatings 9(6):384

    CAS  Google Scholar 

  79. Davison RR, Bullin JA, Estakhri CK, Williamson SA, Chipps JF, Chun JS, Billiter TC (2000) A comprehensive laboratory and field study of high-cure crumb-rubber modified asphalt materials (No. FHWA/TX-01/1460-1). Texas Transportation Institute

  80. Yang ZF, Li MJ, Wang XD (2005) The history and status of rubber powder used in road-building. J Mater Civ Eng 22(7):19–22

    Google Scholar 

  81. California Department of Transportation, Materials Engineering and Testing Services. Asphalt Rubber Usage Guide. 5900 Folsom Blvd, Sacramento, CA 95819 USA, 2003

  82. Ibrahim MR, Katman HY, Karim MR, Koting S, Mashaan NS (2013) A review on the effect of crumb rubber addition to the rheology of crumb rubber modified bitumen. Adv Mater Sci Eng. https://doi.org/10.1155/2013/415246

    Article  Google Scholar 

  83. Huang W, Lin P, Tang N, Hu J, Xiao F (2017) Effect of crumb rubber degradation on components distribution and rheological properties of terminal blend rubberized asphalt binder. Constr Build Mater 151:897–906

    CAS  Google Scholar 

  84. California's Department of Resources Recycling and Recovery (Calrecycle) Technical Assistance and Training. A basic introduction to Rac usage (Rac-101), 2010

  85. Han L, Zheng M, Wang C (2016) Current status and development of terminal blend tyre rubber modified asphalt. Constr Build Mater 128:399–409

    Google Scholar 

  86. Navarro FJ, Partal P, Martınez-Boza F, Gallegos C (2004) Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens. Fuel 83(14–15):2041–2049

    CAS  Google Scholar 

  87. Mull MA, Stuart K, Yehia A (2002) Fracture resistance characterization of chemically modified crumb rubber asphalt pavement. J Mater Sci 37(3):557–566

    CAS  Google Scholar 

  88. Shatanawi KM, Biro S, Geiger A, Amirkhanian SN (2012) Effects of furfural activated crumb rubber on the properties of rubberized asphalt. Constr Build Mater 28(1):96–103

    Google Scholar 

  89. Kocevski S, Yagneswaran S, Xiao F, Punith VS, Smith DW Jr, Amirkhanian S (2012) Surface modified ground rubber tire by grafting acrylic acid for paving applications. Constr Build Mater 34:83–90

    Google Scholar 

  90. Yadollahi G, Mollahosseini HS (2011) Improving the performance of crumb rubber bitumen by means of poly phosphoric acid (PPA) and vestenamer additives. Constr Build Mater 25(7):3108–3116

    Google Scholar 

  91. Cheng G, Shen B, Zhang J (2011) A study on the performance and storage stability of crumb rubber-modified asphalt. Pet Sci Technol 29(2):192–200

    CAS  Google Scholar 

  92. Zhou X, Wang F, Yuan X, Kuang M, Song Y, Li C (2015) Usage of slurry oil for the preparation of crumb-rubber-modified asphalt emulsions. Constr Build Mater 76:279–285

    Google Scholar 

  93. Singh B, Kumar L, Gupta M, Chauhan M, Chauhan GS (2013) Effect of activated crumb rubber on the properties of crumb rubber-modified bitumen. J Appl Polym Sci 129(5):2821–2831

    CAS  Google Scholar 

  94. Licitra G, Cerchiai M, Teti L, Ascari E, Fredianelli L (2015) Durability and variability of the acoustical performance of rubberized road surfaces. Appl Acoust 94:20–28

    Google Scholar 

  95. Epps JA (1994) Uses of recycled rubber tires in highways; transportation research board, vol 198. National Research Council, Washington, DC, USA

  96. Amirkhanian SN (2001) Utilization of crumb rubber in asphaltic concrete mixtures–South Carolina's Experience. See ref 3:163–174

    Google Scholar 

  97. Takallou HB, Hicks RG, Esch DC (1986) Effect of mix ingredients on the behavior of rubber-modified asphalt mixtures. Transp Res Rec: J Transp Res Board 1996:58–80

    Google Scholar 

  98. Heitzman M (1992) Design and construction of asphalt paving materials with crumb rubber modifier. Transp Res Rec: J Transp Res Board 1339:1–8

    Google Scholar 

  99. Li Y, Lyu Y, Xu M, Fan L, Zhang Y (2019) Determination of construction temperatures of crumb rubber modified bitumen mixture based on CRMB mastic. Materials 12(23):3851

    CAS  Google Scholar 

  100. Liu S, Cao W, Fang J, Shang S (2009) Variance analysis and performance evaluation of different crumb rubber modified (CRM) asphalt. Constr Build Mater 23(7):2701–2708

    Google Scholar 

  101. Shen J, Amirkhanian S, Xiao F, Tang B (2009) Influence of surface area and size of crumb rubber on high-temperature properties of crumb rubber modified binders. Constr Build Mater 23(1):304–310

    Google Scholar 

  102. Venudharan V, Biligiri KP, Das NC (2018) Investigations on behavioral characteristics of asphalt binder with crumb rubber modification: rheological and thermochemical approach. Constr Build Mater 181:455–464

    CAS  Google Scholar 

  103. Olsson E, Jelagin D, Partl MN (2019) New discrete element framework for modelling asphalt compaction. Road Mat Pavement Des 20(sup2):S604–S616

    CAS  Google Scholar 

  104. Yousefi Kebria D, Moafimadani SR, Goli Y (2015) Laboratory investigation of the effect of crumb rubber on the characteristics and rheological behaviour of asphalt binder. Road Mater Pavement Des 16(4):946–956

    CAS  Google Scholar 

  105. Mohamed AA, Husaini O, Hamzah MO, Ismail H (2009) Rheological properties of crumb rubber-modified bitumen containing antioxidant. Arab J Sci Engi 34(1B)

  106. Chen Y, Ji C, Wang H, Su Y (2018) Evaluation of crumb rubber modification and short-term aging on the rutting performance of bio asphalt. Constr Build Mater 193:467–473

    Google Scholar 

  107. Wang H, Dang Z, Li L, You Z (2013) Analysis on fatigue crack growth laws for crumb rubber modified (CRM) asphalt mixture. Constr Build Mater 47:1342–1349

    Google Scholar 

  108. Sitinamaluwa HS, Mampearachchi WK (2014) Development of a polymer-modified bitumen specification based on empirical tests–case study for Sri Lanka. Road Mater Pavement Des 15(3):712–720

    Google Scholar 

  109. Depaolini AR, Bianchi G, Fornai D, Cardelli A, Badalassi M, Cardelli C, Davoli E (2017) Physical and chemical characterization of representative samples of recycled rubber from end-of-life tires. Chemosphere 184:1320–1326

    Google Scholar 

  110. Qian C, Fan W (2020) Evaluation and characterization of properties of crumb rubber/SBS modified asphalt. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.123319

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdalrhman Milad.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milad, A., Ahmeda, A.G.F., Taib, A.M. et al. A review of the feasibility of using crumb rubber derived from end-of-life tire as asphalt binder modifier. J Rubber Res 23, 203–216 (2020). https://doi.org/10.1007/s42464-020-00050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-020-00050-y

Keywords

Navigation