Skip to main content
Log in

Calcium Lignosulfonate as a Depressant for Enhancing Flotation Separation of Covellite and Enargite

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

Arsenic contamination significantly affects the quality of copper concentrates, presenting challenges during smelting processes. Considering that covellite and enargite have similar surface properties, they are difficult to separate by flotation, resulting in copper concentrates with excessive levels of arsenic. To address this issue, this study systematically investigated the flotation separation of covellite and enargite in microflotation and bench-scale flotation tests using calcium lignosulfonate as a depressant, with the results indicating that calcium lignosulfonate can be used to separate covellite and enargite because it enables the separation of arsenic-bearing copper minerals into high- and low-arsenic (As 0.57%) copper concentrates. According to contact angle and adsorption tests, scanning electron microscopy–energy dispersive spectroscopy, and X-ray photoelectron spectroscopy, the differential adsorption of calcium lignosulfonate onto covellite and enargite is the primary reason for their distinct flotation behaviors in the presence of calcium lignosulfonate. The selective depressive effect of calcium lignosulfonate provides a novel approach for improving the flotation separation of arsenic-bearing minerals from copper sulfide minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Date will be made available on request.

References

  1. Filippou D, St-Germain P, Grammatikopoulos T (2013) Recovery of metal values from copper-arsenic minerals and other related resources. Miner Process Extr Metall Rev 28(4):247–298. https://doi.org/10.1080/08827500601013009

    Article  Google Scholar 

  2. Plackowski C, Nguyen AV, Bruckard WJ (2012) A critical review of surface properties and selective flotation of enargite in sulphide systems. Miner Eng 30:1–11. https://doi.org/10.1016/j.mineng.2012.01.014

    Article  Google Scholar 

  3. Tayebi-Khorami M, Manlapig E, Forbes E (2017) Selective flotation of enargite from copper sulphides in Tampakan deposit. Miner Eng 112:1–10. https://doi.org/10.1016/j.mineng.2017.06.021

    Article  Google Scholar 

  4. Long G, Peng YG, Bradshaw D (2012) A review of copper–arsenic mineral removal from copper concentrates. Miner Eng 36:179–186. https://doi.org/10.1016/j.mineng.2012.03.032

    Article  Google Scholar 

  5. Safarzadeh MS, Moats MS, Miller JD (2014) Recent trends in the processing of enargite concentrates. Miner Process Extr Metall 35:283–367. https://doi.org/10.1080/08827508.2012.723651

    Article  Google Scholar 

  6. Ma X, Bruckard WJ (2009) Rejection of arsenic minerals in sulfide flotation – a literature review. Int J Miner Process 93:89–94. https://doi.org/10.1016/j.minpro.2009.07.003

    Article  Google Scholar 

  7. Senior GD, Guy PJ, Bruckard WJ (2006) The selective flotation of enargite from other copper minerals—a single mineral study in relation to beneficiation of the Tampakan deposit in the Philippines. Int J Miner Process 81(1):15–26. https://doi.org/10.1016/j.minpro.2006.06.001

    Article  Google Scholar 

  8. Guo H, Yen WT(2008) Electrochemical study of synthetic and natural enargites. In: Proceedings of [the] 24th International Mineral Processing Congress, Beijing, China, Sept. 24–28, vol. 1, pp. 1138–1145

  9. Plackowski C, Hampton MA, Nguyen AV, Bruckard WJ (2013) Fundamental studies of electrochemically controlled surface oxidation and hydrophobicity of natural enargite. Langmuir 29(7):2371–2386. https://doi.org/10.1021/la3043654

    Article  Google Scholar 

  10. Schwartz DM, Omaynikova VY, Stocker SK(2017) Environmental benefits of the CESL process for the treatment of high-arsenic copper concentrates, in: Hydroprocess-ICMSE In: Presented at the 9th International Seminar on Process Hydrometallury-International Conference on Metal Solvent Extraction, Gecamin Digital Publications, Santiago, Chile

  11. Smith LK, Bruckard WJ (2008) The separation of arsenic from copper in a Northparkes copper-gold ore using controlled-potential flotation. Int J Miner Process 84:15–24. https://doi.org/10.1016/j.minpro.2007.05.002

    Article  Google Scholar 

  12. Pauporté T, Schuhmann D (1996) An electrochemical study of natural enargite under conditions relating to those used in flotation of sulphide minerals. Colloids Surf A 111(1–2):1–19. https://doi.org/10.1016/0927-7757(95)03498-6

    Article  Google Scholar 

  13. Asbjornsson J, Kelsall GH, Pattrick RAD, Vaughan DJ, Wincott PL, Hope GA (2004) Electrochemical and surface analytical studies of enargite in acid solution. J Electrochem Soc 151(7):E250–E256

    Article  Google Scholar 

  14. Guo H, Yen WT (2008) Electrochemical study of synthetic and natural enargites. Proc Int Miner Process Congr 24(1):1138–1145

    Google Scholar 

  15. Yepsen R, Gutierrez L (2020) Effect of Eh and pH on the flotation of enargite using seawater. Miner Eng 159(7):106612. https://doi.org/10.1016/j.mineng.2020.106612

    Article  Google Scholar 

  16. Menacho JM, Aliaga W, Valenzuela R, Ramos V, Olivares I (1993) Selective flotation of enargite and chalcopyrite. Minerales 48:0026-458X

    Google Scholar 

  17. Plackowski C, Hampton MA, Bruckard WJ, Nguyen AV (2014) An XPS investigation of surface species formed by electrochemically induced surface oxidation of enargite in the oxidative potential range. Miner Eng 55(1):60–74. https://doi.org/10.1016/j.mineng.2013.08.010

    Article  Google Scholar 

  18. Plackowski C, Bruckard WJ, Nguyen AV (2014) Surface characterisation, collector adsorption and flotation response of enargite in a redox potential controlled environment. Miner Eng 65:61–73. https://doi.org/10.1016/j.mineng.2014.05.013

    Article  Google Scholar 

  19. Sasaki K, Takatsugi K, Ishikura K, Hirajima T (2010) Spectroscopic study on oxidative dissolution of chalcopyrite, enargite and tennantite at different pH values. Hydrometallurgy 100(3–4):144–151. https://doi.org/10.1016/j.hydromet.2009.11.007

    Article  Google Scholar 

  20. Suyantara GPW, Hirajima T, Miki H, Sasaki K, Kuroiwa S, Aoki Y (2020) Effect of H2O2 and potassium amyl xanthate on separation of enargite and tennantite from chalcopyrite and bornite using flotation. Miner Eng 152:106371. https://doi.org/10.1016/j.mineng.2014.05.013

    Article  Google Scholar 

  21. Suyantara GPW, Berdakh D, Miki H (2023) Effect of hydrogen peroxide on selective flotation of chalcocite and enargite. Int J Min Sci Technol 3(6):703–716. https://doi.org/10.1016/j.ijmst.2023.01.002

    Article  Google Scholar 

  22. Gan YG, Deng RD, Liu QJ (2022) Surface characteristics, collector adsorption, and flotation response of covellite in oxidizing environment. Trans Nonferrous Met Soc China 32(2):657–667. https://doi.org/10.1016/S1003-6326(22)65823-0

    Article  Google Scholar 

  23. Asbjornsson J, Kelsall GH, Pattrick RAD, Vaughan DJ, Wincott PL, Hope GA (2004) Electrochemical and surface analytical studies of enargite in acid solution. J Electrochem Soc 151(7):E250–E256

    Article  Google Scholar 

  24. Suyantara GPW, Hirajima T, Miki H, Sasaki K, Kuroiwa S, Aoki Y (2021) Effect of Na2SO3 on the floatability of chalcopyrite and enargite. Miner Eng 173:107222. https://doi.org/10.1016/j.mineng.2021.107222

    Article  Google Scholar 

  25. Tajadod J (1997) Flotation chemistry of enargite and chalcopyrite using potassium amyl xanthate and depressants (PhD Thesis). Queen’s University, Kingston, Ontario, Canada

  26. Tapley B, Yan D (2003) The selective flotation of arsenopyrite from pyrite. Miner Eng 16(11):1217–1220. https://doi.org/10.1016/j.mineng.2003.07.017

    Article  Google Scholar 

  27. Filippou D, St-Germain P, Grammatikopoulos T (2007) Recovery of metal values from copper—arsenic minerals and other related resources. Miner Process Extr Metall 28:247–298. https://doi.org/10.1080/08827500601013009

    Article  Google Scholar 

  28. Fornasiero D, Fullston D, Li C, Ralston J (2001) Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution. Int J Miner Process 61(2):109–119. https://doi.org/10.1016/S0301-7516(00)00029-6

    Article  Google Scholar 

  29. Gan YG, Deng RD, Liu QJ (2022) Flotation separation of covellite and enargite via oxidation treatment. Minerals 12(08):970. https://doi.org/10.3390/min12080970

    Article  Google Scholar 

  30. Falconi IBA, Junior ABB, Baltazar MPG, Espinosa DCR, Tenório JAS (2023) An overview of treatment techniques to remove ore flotation reagents from mining wastewater. J Environ Chem Eng 11(6):111270. https://doi.org/10.1016/j.jece.2023.111270

    Article  Google Scholar 

  31. Deng RD, Yang XF, Hu Y, Ku JG, Zuo WR, Ma YQ (2018) Effect of Fe(II) as assistant depressant on flotation separation of scheelite from calcite. Miner Eng 118:133–140. https://doi.org/10.1016/j.mineng.2017.12.017

    Article  Google Scholar 

  32. Nowak P, Laajalehto K (2000) Oxidation of galena surface–an XPS study of the formation of sulfoxy species. Appl Surf Sci 157:101–111. https://doi.org/10.1016/S0169-4332(99)00575-9

    Article  Google Scholar 

  33. Wu DD, Wen SM, Deng JS, Liu J, Mao YB (2015) Study on the sulfidation behavior of smithsonite. Appl Surf Sci 329:315–320. https://doi.org/10.1016/j.apsusc.2014.12.167

    Article  Google Scholar 

  34. Gao WZ (2022) Mechanism of calcium lignosulfonate in apatite and dolomite flotation system. Int J Miner Metall Mater 29(9):1697–1704

    Article  MathSciNet  Google Scholar 

  35. McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521–1529

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51804080).

Author information

Authors and Affiliations

Authors

Contributions

RL: investigation, data curation, validation, visualization, investigation, and writing—original draft. QL: formal analysis, investigation, writing (review and editing), and visualization. RD: formal analysis, writing (review and editing), and funding acquisition.

Corresponding author

Correspondence to Rongdong Deng.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, R., Liu, Q. & Deng, R. Calcium Lignosulfonate as a Depressant for Enhancing Flotation Separation of Covellite and Enargite. Mining, Metallurgy & Exploration 41, 1135–1144 (2024). https://doi.org/10.1007/s42461-024-00936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-024-00936-0

Keywords

Navigation