Skip to main content
Log in

Investigation of Acoustic Emissions and Friction Behavior in a Two-phase Flow with Different Sand Content

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

The hydraulic transport is a process commonly used in mining and other industries for moving fine particles or ore concentrates in pipes over long distances using a water stream. The control and monitoring of this process requires sensor technology capable of measuring data that can be related to characteristics of the two-phase flow. A novel sensor technology with high potential for this purpose is the acoustic emission (AE) technology. Within this work, we conducted experimental tests measuring AE on a hydraulic transport system considering different sand concentrations in the flow. The analysis shows that the friction of sand particles against the pipe wall has a strong relationship with the AE activity. Besides, a deeper analysis of the AE signals revealed that the flow regime has an important influence on the generation of continuous AE and AE bursts due to turbulences that facilitate impacts of particles against the pipe wall. The main contribution of this paper is to provide experimental evidence and insights on how the AE measurements can be used for monitoring and controlling of hydraulic transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Neukirchen F, Ries G (2016) Die Welt der Rohstoffe. Springer Verlag, Berlin

    Book  Google Scholar 

  2. Buchholz P, Brandenburg T (2018) Demand, supply, and price trends for mineral raw materials relevant to the renewable energy transition wind energy, solar photovoltaic energy, and energy storage. Chem Ing Tech 90(1-2):141–153. https://doi.org/10.1002/cite.201700098

    Article  Google Scholar 

  3. Ren Z, Jiang M, Chen D, Yu Y, et al. (2022) Stocks and flows of sand, gravel, and crushed stone in China (1978–2018): evidence of the peaking and structural transformation of supply and demand. Resour Conserv Recy 180 (106):173. https://doi.org/10.1016/j.resconrec.2022.106173

    Article  Google Scholar 

  4. US Geological Survey (2020) Mineral commodity summaries 2020. Tech. rep. https://doi.org/10.3133/mcs2020

  5. Heidelberg Cement AG (2020) Gewinnung und Aufbereitung von Zuschlagstoffen. https://www.heidelbergcement.de/de/sand-kies/gewinnung-und-aufbereitung Accessed 18 October 2020

  6. Worster R, Denny D (1955) Hydraulic transport of solid material in pipes. P I Mech Eng 169 (1):563–586

    Google Scholar 

  7. Hayden J, Stelson T (1971) In Advances in solid–liquid flow in pipes and its application. In: Zandi I (ed). Pergamon Press, Oxford, pp 149–163

  8. Hellier C (2020) Handbook of nondestructive evaluation. Mc Graw Hill, New York

    Google Scholar 

  9. Vraetz T (2018) Entwicklung und Anwendung eines innovativen Konzepts zur Inline-Charakterisierung von Stoffgemischen in kontinuierlichen Massenströmen mittels der Acoustic Emission Technologie. Ph.D. thesis, RWTH Aachen University

  10. Pecorari C (2013) Characterizing particle flow by acoustic emission. J Nondestruct Eval 32:104–111. https://doi.org/10.1007/s10921-012-0163-7

    Article  Google Scholar 

  11. Jingdai W, Congjing R, Yongrong Y (2009) Characterization of flow regime transition and particle motion using acoustic emission measurement in a gas-solid fluidized bed. Amer J Inst Chem E 56(5):1173–1183. 10.1002/aic.12071

    Article  Google Scholar 

  12. Schoone S, Getz M, Clausen E (2021) Detection and differentiation of sand content in hydraulic transport using acoustic emission technology. Min Rep Glückauf 157(3):247–257

    Google Scholar 

  13. Mueller W (2014) Mechanische Verfahrenstechnik und ihre Gesetzmabigkeiten. Oldenbourg Wissenschatfsverlag, Oldenbourg

    Book  Google Scholar 

  14. Bakeev K (2010) Process analytical technology: spectroscopic tools and implementation strategies for the chemical and pharamaceutical industries. Wiley, New York

    Book  Google Scholar 

  15. Surek D, Stempin S (2007) Angewandte strömungsmechanik für Praxis und Studium. Vieweg+Teubner Verlag, Wiesbaden

    Book  Google Scholar 

  16. Buhrke H, Kecke H, Richter H (1989) Strömungsförderer: hydraulischer und pneumatischer Transport in Rohrleitungen. Vieweg+Teubner Verlag, Wiesbaden

    Book  Google Scholar 

  17. Cai B (1992) Untersuchung zum Einfluss der partikelgrößenverteilung und Partikelform auf den Druckverlust bei horizontaler fluid-feststoff-rohrströmung, VDI-Verlag GmbH, Düsseldorf

  18. Wichowski P, Siwiec T, Kalenik M (2019) Effect of the concentration of sand in a mixture of water and sand flowing through PP and PVC elbows on the minor head loss coefficient. Water 11(4):828. https://doi.org/10.3390/w11040828

    Article  Google Scholar 

  19. Anton Paar GmbH (2021) Viscosity of water. https://wiki.anton-paar.com/de-de/wasser. Accessed 27 October 2021

Download references

Acknowledgements

We would like to acknowledge the contribution from Mr. Thomas Oberste for the support during the experimental tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Leaman.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoone, S., Getz, M., Leaman, F. et al. Investigation of Acoustic Emissions and Friction Behavior in a Two-phase Flow with Different Sand Content. Mining, Metallurgy & Exploration 40, 305–314 (2023). https://doi.org/10.1007/s42461-022-00723-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-022-00723-9

Keywords

Navigation