Skip to main content
Log in

A Panoramic Overview of Chlorination and Carbochlorination of Light Rare Earth Oxides, Including Thermodynamic, Reaction Mechanism, and Kinetic Aspects

Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

Chlorination and carbochlorination processes have industrial applications in metallurgical activity for extraction and purification of uncommon metals such as rare earth elements (REE). This study reviews the chlorination and carbochlorination reactions of light REE (LREE) oxides with chlorine considering the thermodynamic, stoichiometric, and kinetic aspects of the reactions. Lanthanides between lanthanum to gadolinium were considered as LREE, in agreement with previous literature, and the results were detailed in this review. LREE were analyzed taking into account their oxidation states and were divided into three groups accordingly. The results presented show that, although the LREE are chemically similar, their behaviors during the reactions with Cl2 and Cl2–C, and the different LREE-O–Cl compounds formed, have particularities. It was observed that gadolinium, in both thermodynamic calculations and experimental results, presents some differences, and it can be considered intermediate between light and heavy REE; i.e., reactions between LREE2O3 and Cl2(g) begin at approximately 250 °C, except for Gd2O3 that begins at 327 °C. The present work will contribute to a better understanding of the chemistry of LREE oxides and Cl2 under different conditions and the products obtained in the LREE–O––Cl2(g) and LREE–O–C–Cl2(g) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Connelly NG, Damhus T, Hartshorn RM, Hutton AT (eds) (2005) Nomenclature of inorganic chemistry: IUPAC recommendations. Royal Society of Chemistry, London, pp 51

  2. Gupta CK, Krishnamurthy N (2005) Extractive metallurgy of rare earths. CRC, London, pp 27–31; 151–2

    Google Scholar 

  3. Shannon RD (1976) Revised effective ionic radii studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  4. Cotton S (2020) Two centuries of the rare earths. Chimie nouvelle N° 133, pp 1–12

  5. Goodenough KM, Wall F, Merriman D (2018) The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat Resour Res 27(2):201–216. https://doi.org/10.1007/s11053-017-9336-5

    Article  Google Scholar 

  6. Zhou B, Li Z, Chen C (2017) Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 7(11):203. https://doi.org/10.3390/min7110203

    Article  Google Scholar 

  7. Okabe P, Newton M, Rappleye D, Simpson MF (2020)Gas-solid reaction pathway for chlorination of rare earth and actinide metals using hydrogen and chlorine gas. J Nucl Mater 534:152156. https://doi.org/10.1016/j.jnucmat.2020.152156

    Article  Google Scholar 

  8. Habashi F (1997) Handbook of extractive metallurgy, vol 3. Wiley-VCH, Weinheim

  9. Möller P, Cerný P, Saupé F (1989) Lanthanides, tantalum and niobium, proceedings of the workshop in Berlin, November 1986. Springer, Berlin Heidelberg, pp 349–351

    Google Scholar 

  10. Jena PK, Brocchi EA (1997) Metal extraction through chlorine metallurgy. Miner Process Extr Metall Rev 16(4):211–237. https://doi.org/10.1080/08827509708914136

    Article  Google Scholar 

  11. Wang Z, Zhang L, Lei P, Chi M (2002) Rare earth extraction and separation from mixed bastnaesite-monazite concentrate by stepwise carbochlorination–chemical vapor transport. Metall Mater Trans B Process Metall Mater Process Sci 33B:661–668. https://doi.org/10.1007/s11663-002-0018-1

    Article  Google Scholar 

  12. Adachi G, Shinozaki K, Hirashima Y, Machida K (1991) Rare earth separation using chemical vapor transport with LnCl,-AlCl, gas phase complexes. J Less Common Met 169:L1–L4. https://doi.org/10.1016/0022-5088(91)90225-S

    Article  Google Scholar 

  13. Jiang J, Ozaki T, Machida K, Adachi G (1997) Separation and recovery of rare earths via a dry chemical vapour transport based on halide gaseous complexes. J Alloys Compd 260:222–235. https://doi.org/10.1016/S0925-8388(97)00176-X

    Article  Google Scholar 

  14. Murase K, Machida K, Adachi G (1994) Vapor phase extraction and mutual separation of rare earths from monazite using chemical vapor transport mediated by vapor complexes. Chem Lett 23(7):1297–1300. https://doi.org/10.1246/cl.1994.1297

    Article  Google Scholar 

  15. Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22. https://doi.org/10.1016/j.jclepro.2012.12.037

    Article  Google Scholar 

  16. Kaplan V, Wachtel E, Gartsman K, Feldman Y, Park K, Lubomirsky I (2021) Using chlorine gas to recover rare earth metals from end-of-life permanent magnets. JOM 73:1957–1965. https://doi.org/10.1007/s11837-021-04592-3

    Article  Google Scholar 

  17. Gaviría JP, Navarro LG, Bohé AE (2012) Chlorination of lanthanum oxide. J Phys Chem A 116(9):2062–2070. https://doi.org/10.1021/jp210457r

    Article  Google Scholar 

  18. Bosco MV, Fouga GG, Bohé AE (2012) Kinetic study of neodymium oxide chlorination. Thermoch Acta 540:98–106. https://doi.org/10.1016/j.tca.2012.04.014

    Article  Google Scholar 

  19. Esquivel MR, Bohé AE, Pasquevich DM (2005) Chlorination of Sm2O3. J Mater Process Technol 170:304–309

    Article  Google Scholar 

  20. Esquivel MR, Bohé AE, Pasquevich DM (2005) A quantitative analysis of the chlorination of samarium sesquioxide. Mater Sci Eng A 397:310–313. https://doi.org/10.1016/j.msea.2005.02.061

    Article  Google Scholar 

  21. Pomiro FJ, Fouga GG, Bohé AE (2013) Kinetic study of europium oxide chlorination. Metall Mater Trans B Process Metall Mater Process Sci 44:1509–1519. https://doi.org/10.1007/s11663-013-9931-8

    Article  Google Scholar 

  22. Pomiro FJ, Fouga GG, Gaviría JP, Bohé AE (2015) Thermogravimetry study of Gd2O3 chlorination. Kinetics and characterization of gadolinium oxychloride. J Therm Anal Calorim 122(2):679–687. https://doi.org/10.1007/s10973-015-4738-2

    Article  Google Scholar 

  23. Pomiro FJ, Gaviría JP, Fouga GG, Vega LD, Bohé AE (2019) Chlorination of Pr2O3 and Pr6O11. Crystal structure, magnetic and spectroscopic properties of praseodymium oxychloride. J Alloys Compd 776:919–926. https://doi.org/10.1016/j.jallcom.2018.10.329

    Article  Google Scholar 

  24. Gaviría JP, Bohé AE (2009) The kinetics of the chlorination of yttrium oxide. Metall Trans B 40:45–53. https://doi.org/10.1007/s11663-008-9215-x

    Article  Google Scholar 

  25. Esquivel MR, Bohé AE, Pasquevich DM (2003) Chlorination of cerium dioxide. Thermoch Acta 398:81–91. https://doi.org/10.1016/S0040-6031(02)00323-4

    Article  Google Scholar 

  26. Pomiro FJ, Fouga GG, Gaviría JP, Bohé AE (2014) Study of the reaction stages and kinetics of the europium oxide carbochlorination. Metall Mater Trans B Process Metall Mater Process Sci 46(1):304–315. https://doi.org/10.1007/s11663-014-0196-7

    Article  Google Scholar 

  27. Esquivel MR, Bohé AE, Pasquevich DM (2002) Carbochlorination of cerium dioxide. Trans Inst min Metall (sect. C: mineral process Extr Metall) 111/proc. Australas. Inst Min Metall 307:C149–C155. https://doi.org/10.1179/037195502766647075

    Article  Google Scholar 

  28. Esquivel MR, Bohé AE, Pasquevich DM (2003) Carbochlorination of samarium sesquioxide. Thermoch Acta 403:207–218. https://doi.org/10.1016/j.jmatprotec.2005.05.007

    Article  Google Scholar 

  29. Esquivel MR, Bohé AE, Pasquevich DM (2005) Effect of reaction temperature on the chlorination of a Sm2O3–CeO2–C mixture. Thermoch Acta 432:47–55. https://doi.org/10.1016/j.tca.2005.04.011

    Article  Google Scholar 

  30. Gaviría JP, Bohé AE (2010) Carbochlorination of yttrium oxide. Thermoch Acta 509:100–110. https://doi.org/10.1016/j.tca.2010.06.009

    Article  Google Scholar 

  31. Gaviría JP, Fouga GG, Bohé AE (2011) Kinetics of yttrium oxide carbochlorination. Thermoch Acta 517:24–33. https://doi.org/10.1016/j.tca.2011.01.026

    Article  Google Scholar 

  32. Gimenes MA, Oliveira HP (2001) Microstructural studies and Carbochlorination kinetics of Xenotime ore. Metall Mater Trans B Process Metall Mater Process Sci 32B:1007–1013. https://doi.org/10.1007/s11663-001-0089-4

    Article  Google Scholar 

  33. Murase K, Ozaki T, Machida K, Adachi G (1996) Extraction and mutual separation of rare earths from concentrates and crude oxides using chemical vapor transport. J Alloys Compd 233:96–106. https://doi.org/10.1016/0925-8388(96)80040-5

    Article  Google Scholar 

  34. Braginski AI, Isenberg AO, Miller MT, Oeffinger TR (1972) Chlorination of yttrium oxide in presence of carbon. Ceramic Bulletin 51(8):630–632 636

    Google Scholar 

  35. Brugger W, Greinacher E (1967) A process for direct chlorination of rare earth ores at high temperatures on a production scale. JOM 19:32–35. https://doi.org/10.1007/BF03378662

    Article  Google Scholar 

  36. Zimmerman JB, Ingles JC (1960) Isolation of the rare earth elements. Anal Chem 32(2):241–246

    Article  Google Scholar 

  37. Zhang LQ, Zhang FC, Yao SH, Jiang LL, Wang XH (2007) Rare earth extraction from mixed bastnaesite-monazite concentrate by carbochlorination-oxidation. Chin J Process Eng 7(1):75–78. https://doi.org/10.3321/j.issn:1009-606X.2007.01.016

    Article  Google Scholar 

  38. Augusto EB, Oliveira HP (2001) Kinetics of chlorination and microstructural changes of Xenotime by carbon tetrachloride. Metall Trans B 32:783–791. https://doi.org/10.1007/s11663-001-0065-z

    Article  Google Scholar 

  39. Miller JF, Miller SE, Himes RC (1959) Preparation of anhydrous rare earth chlorides for physicochemical studies. J Am Chem Soc 81:4449–4451. https://doi.org/10.1021/ja01526a003

    Article  Google Scholar 

  40. Ozaki T, Murase K, Machida KI, Adachi GY (1996) Extraction of rare earths and thorium from monazite by chlorination with carbon tetrachloride. Trans Instn Min Metall (Sect C: Mineral Process Extr Metall) 105:141–145

    Google Scholar 

  41. Iordanov N, Daiev K (1962) Separation of small amounts of the rare earths from minerals and rocks by chlorination with carbon tetrachloride. Zh Anal Khim 17(4):429–431

    Google Scholar 

  42. Itoh M, Miura K, Machida K (2009) Novel rare earth recovery process on Nd–Fe–B magnet scrap by selective chlorination using NH4Cl. J Alloys Compd 477:484–487. https://doi.org/10.1016/j.jallcom.2008.10.036

    Article  Google Scholar 

  43. Gaede DW, Ruffier BD, Downey JP, Chorney JL, Twidwell LG, Foy RJ, Lyons KM (2015) Chlorination roasting of rare earth element oxides, drying, roasting, and calcining of minerals. Springer, Cham, pp 11–18. https://doi.org/10.1007/978-3-319-48245-3_2

  44. Zhu GC, Chi RA, Zhang ZG (2000) Chlorinating mechanism of cerium dioxide by NH4Cl. J Chin Rare Earth Soc 18(4):293–296. https://doi.org/10.3321/j.issn:1000-4343.2000.04.002

    Article  Google Scholar 

  45. Zhu G, Chi R, Shi W (2003) Chlorination kinetics of fluorine-fixed rare earth concentrate. Miner Eng 16(7):671–674. https://doi.org/10.1016/S0892-6875(03)00129-8

    Article  Google Scholar 

  46. Zhu GC, Chi RA (2006) Kinetics of chlorinating rare earth in bastnaesite with NH4Cl chlorinating method after fixed fluorine treatment. Chin Rare Earths 27(1):65–69. https://doi.org/10.3969/j.issn.1004-0277.2006.01.019

    Article  Google Scholar 

  47. Shi WZ, Zhu GC, Hua J (2003) Recovery of RE from Baotou rare earth concentrate with chlorination roasting. Trans Nonferrous Metals Soc China 13(2):438–442

    Google Scholar 

  48. Shi WZ, Zhang X, Zhu GC (2004) Kinetics in chlorinating mixed rare earth oxides reaction process by ammonium chloride. Chin J Rare Met 28(6):1019–1023. https://doi.org/10.3969/j.issn.0258-7076.2004.06.014

    Article  Google Scholar 

  49. Shi WZ, Zhang X, Zhao YH (2005) Kinetics on chlorination process of La2O3 and CeO2 by ammonium chloride. Chin J Process Eng 5(1):23–28. https://doi.org/10.3321/j.issn:1009-606X.2005.01.005

    Article  Google Scholar 

  50. Chen HN, Sun YH, Fu YX (2008) Direct preparation of anhydrous lanthanide chlorides from lanthanide oxides chlorinated by NH4Cl. Chin Rare Earths 29(2):54–59. https://doi.org/10.16533/j.cnki.15-1099/tf.2008.02.009

    Article  Google Scholar 

  51. Chu YX, Shi WZ, Zuo CS (2016) Chlorination of Sm2O3(s) with NH4Cl(s) roasting method and its kinetics. Henan Sci 11:1808–1811

    Google Scholar 

  52. Lorenz T, Bertau M (2017) Recycling of rare earth elements. Phys Sci Rev 2(1). https://doi.org/10.1515/psr-2016-0067

  53. Lorenz T, Bertau M (2019) Recycling of rare earth elements from FeNdB-magnets via solid-state chlorination. J Clean Prod 215:131–143. https://doi.org/10.1016/j.jclepro.2019.01.051

    Article  Google Scholar 

  54. Lim KH, Choi CU, Moon G, Lee T, Kang J (2021) Selective chlorination of rare earth elements from a Nd-Fe-B magnet using zinc chloride. J Sustain Metall 7:794–805. https://doi.org/10.1007/s40831-021-00380-0

  55. Xing Z, Cheng G, Yang H, Xue X, Jiang P (2020) Mechanism and application of the ore with chlorination treatment: a review. Miner Eng 154:106404. https://doi.org/10.1016/j.mineng.2020.106404

    Article  Google Scholar 

  56. Cotton S (2006) Lanthanide and actinide chemistry. Wiley, New York

  57. Outotec research oy (2007) HSC Chemistry software version 6.12. Outotec research oy, Pori, Finland

  58. Jacob KT, Dixit A, Rajput A (2016) Stability field diagrams for ln–O–cl systems. Bull Mater Sci 39(3):603–611. https://doi.org/10.1007/s12034-016-1219-6

    Article  Google Scholar 

  59. Brown D (1968) Halides of the lanthanides and actinides. Wiley, London

    Google Scholar 

  60. Haschke JM (1979) Halides, handbook on the physics and chemistry of rare earths, Vol 4, Chap 32. North-Holland, Amsterdam

  61. Haibel E, Füglein E, Schulze AS, Walter D (2019) Thermal decomposition of carbonated lanthanum hydroxide. J Therm Anal Calorim 138:3571–3575. https://doi.org/10.1007/s10973-019-08461-9

    Article  Google Scholar 

  62. Atkinson SC (2014) Crystal structures and phase transitions in the rare earth oxides. PhD Thesis, University of Salford

  63. Zinkevich M (2007) Thermodynamics of rare earth sesquioxides. Prog Mater Sci 52:597–647. https://doi.org/10.1016/j.pmatsci.2006.09.002

    Article  Google Scholar 

  64. De Micco G, Pasquevich DM, Bohé AE (2007) Chlorination of aluminium–copper alloys. Thermoch Acta 457:83–91. https://doi.org/10.1016/j.tca.2007.02.012

    Article  Google Scholar 

  65. Scardala P, Villani AR, Brunetti B, Piacente V (2003) Vaporization study of samarium trichloride, samarium tribromide and samarium diiodide. Mater Chem Phys 78:637–644. https://doi.org/10.1016/S0254-0584(02)00190-6

    Article  Google Scholar 

  66. Szekely J, Evans JW, Sohn HY (1976)Gas-solid reactions. Academic, New York

    Google Scholar 

  67. Peterson EE (1957) Reaction of porous solids. AICHE J 3(4):443–448. https://doi.org/10.1002/aic.690030405

    Article  Google Scholar 

  68. Li Z (2020) General rate equation theory for gas–solid reaction kinetics and its application to CaO carbonation. Chem Eng Sci 227:115902. https://doi.org/10.1016/j.ces.2020.115902

    Article  Google Scholar 

  69. Sohn HY (2019) Review of fluid-solid reaction analysis—part 1: single nonporous reactant solid. Can J Chem Eng 97(7):2061–2067. https://doi.org/10.1002/cjce.23469

    Article  MathSciNet  Google Scholar 

  70. Sohn HY (2019) Review of fluid-solid reaction analysis—part 2: single porous reactant solid. Can J Chem Eng 97(7):2068–2076. https://doi.org/10.1002/cjce.23468

    Article  MathSciNet  Google Scholar 

  71. Pijolat M, Favergeon L (2018) Chapter 5 - kinetics and mechanisms of solid-gas reactions. Handbook of thermal analysis and calorimetry. Elsevier, Amsterdam, Vol 6, pp 173–212

  72. Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7(12):1103–1113. https://doi.org/10.1063/1.1750380

    Article  Google Scholar 

  73. Avrami M (1940) Kinetics of phase change. II transformation: time relations for random distribution of nuclei. J Chem Phys 8(2):212–224. https://doi.org/10.1063/1.1750631

    Article  Google Scholar 

  74. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9(2):177–184. https://doi.org/10.1063/1.1750872

    Article  Google Scholar 

  75. Kempen ATW, Sommer F, Mittemeijer EJ (2002) Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. J Mater Sci 37(2):1321–1332. https://doi.org/10.1023/A:1014556109351

    Article  Google Scholar 

  76. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Engs 135:416–427

    Google Scholar 

  77. Barmak KN (2018) A commentary on: “reaction kinetics in processes of nucleation and growth”. Metall Mater Trans B Process Metall Mater Process Sci 49:3616–3680. https://doi.org/10.1007/s11663-010-9421-1

    Article  Google Scholar 

  78. Pijolat M, Favergeon L, Soustelle M (2011) From the drawbacks of the Arrhenius-f(α) rate equation towards a more general formalism and new models for the kinetic analysis of solid–gas reactions. Thermoch Acta 525(1–2):93–102. https://doi.org/10.1016/j.tca.2011.07.026

    Article  Google Scholar 

  79. Pasquevich DM (1990) PhD Thesis, Facultad de Ciencias Exactas de la Universidad Nacional de La Plata, La Plata, Argentina

  80. Pasquevich DM, Amorebieta VT (1992) Mass spectrometric study of volatile products during the carbochlorination of zirconia. V Ber Bunsen-Ges Phys Chem 96(4):534–541. https://doi.org/10.1002/bbpc.19920960403

    Article  Google Scholar 

  81. Garcia E, Corbett JD, Ford JE, Vary WJ (1985)Low-temperature routes to new structures for yttrium, holmium, erbium, and thulium oxychlorides. Inorg Chem 24(4):494–498. https://doi.org/10.1021/ic00198a013

    Article  Google Scholar 

  82. Zachariasen WH (1949) Crystal chemical studies of the 5f-series of elements. XII. New compounds representing known structure types. Acta Cryst 2:388–390. https://doi.org/10.1107/S0365110X49001016

    Article  Google Scholar 

  83. Templeton DH, Dauben CH (1953) Crystal structures of rare earth oxychlorides. J Am Chem Soc 75(23):6069–6070. https://doi.org/10.1021/ja01119a535

    Article  Google Scholar 

  84. Hölsä J, Lahtinen M, Lastusaari M, Valkonen J, Viljanen J (2002) Stability of rare-earth oxychloride phases: bond valence study. J Solid State Chem 165(1):48–55. https://doi.org/10.1006/jssc.2001.9491

    Article  Google Scholar 

  85. Basile LJ, Ferraro JR, Gronert D (1971) I.R. spectra of several lanthanide oxyhalides. J Inorg Nucl Chem 33:1047–1053. https://doi.org/10.1016/0022-1902(71)80173-2

    Article  Google Scholar 

  86. Del Cul GD, Nave SE, Begun GM, Peterson JR (1992) Raman spectra of tetragonal lanthanide oxychlorides obtained from polycrystalline and single-crystal samples. J Raman Spectrosc 23:267–272. https://doi.org/10.1002/jrs.1250230505

    Article  Google Scholar 

  87. Aitasalo T, Holsa J, Lastusaari M, Legendziewicz J, Lehto L, Linden J, Marysko M (2004) Structural, magnetic and spectroscopic investigations of europium oxychloride, EuOCl. J Alloys Compd 380:296–302. https://doi.org/10.1016/j.jallcom.2004.03.057

    Article  Google Scholar 

  88. Pan B, Zhang Z, Lu X (2020) Determination and application of the reaction between REOCl (RE = Y, Gd and Sm) and H2O. Chem Pap 74:3987–3993. https://doi.org/10.1007/s11696-020-01202-5

    Article  Google Scholar 

  89. Yang HC, Eun HC, Cho YZ, Lee HS, Kim IT (2009) Kinetic analysis of dechlorination and oxidation of PrOCl by using a non-isothermal TG method. Thermoch Acta 484:77–81. https://doi.org/10.1016/j.tca.2008.11.012

    Article  Google Scholar 

  90. Yang HC, Cho YJ, Eun HC, Kim EH, Kim IT (2007) Kinetic study of a thermal dechlorination and oxidation of neodymium oxychloride. Thermoch Acta 460:53–59. https://doi.org/10.1016/j.tca.2007.05.019

    Article  Google Scholar 

  91. Yang HC, Cho YJ, Eun HC, Kim EH, Kim IT (2007) Kinetic analysis of a thermal Dechlorination and oxidation of gadolinium oxychloride. J Therm Anal Calorim 90:379–384. https://doi.org/10.1007/s10973-006-7947-x

    Article  Google Scholar 

  92. Hölsä JPK (1982) Thermal stabilities of selected rare earth oxyiodides. J Therm Anal 25:127–133. https://doi.org/10.1007/BF01913061

    Article  Google Scholar 

  93. Patrikeev YB, Novikov GI, Badovskii VV (1973) Thermal dissociation of scandium, yttrium and lanthanum oxide chlorides. Russ J Phys Chem 47:284

    Google Scholar 

  94. Lee SS, Park HI, Joh CH, Byeon SH (2007)Morphology-dependent photoluminescence property of red-emitting LnOCl: Eu (ln = La and Gd). J Solid State Chem 180(12):3529–3534. https://doi.org/10.1016/j.jssc.2007.10

    Article  Google Scholar 

  95. Lee BI, Jeong H, Byeon SH (2014) Oxychloride–hydroxychloride–trihydroxide phase relationships of rare earths in aqueous solution. Inorg Chem 53(10):5212–5221. https://doi.org/10.1021/ic500403v

    Article  Google Scholar 

  96. Udayakantha M, Schofield P, Waetzig GR, Banerjee S (2019) A full palette: crystal chemistry, polymorphism, synthetic strategies, and functional applications of lanthanide oxyhalides. J Solid State Chem 270:569–592. https://doi.org/10.1016/j.jssc.2018.12.017

    Article  Google Scholar 

  97. Wang L, Zhang TA, Lv GZ, Dou ZH, Zhang WG, Zhang JZ, Liu Y (2019) Carbochlorination of alumina and silica from high-alumina fly ash. Miner Eng 130:85–91. https://doi.org/10.1016/j.mineng.2018.09.022

    Article  Google Scholar 

  98. Li Y, Duan D, Liu Y, Yang X (2017) Reaction thermodynamics of Al2O3, Fe2O3, and SiO2 during carbochlorination. Process Chem Lett 46(5):775–777. https://doi.org/10.1246/cl.161166

    Article  Google Scholar 

  99. Wang L, Zhang TA, Lv GZ, Dou ZH, Sun WH, Zhang WG, Niu LP, Zhang ZM (2019) Titanium extraction from fly ash by carbochlorination. JOM 71(12):4624–4630. https://doi.org/10.1007/s11837-019-03460-5

  100. Ruiz MDC, González JA, Rivarola JB (2004) Kinetics of chlorination of tantalum pentoxide in mixture with sucrose carbon by chlorine gas. Metall Mater Trans B Process Metall Mater Process Sci 35(3):439–448. https://doi.org/10.1007/s11663-004-0045-1

    Article  Google Scholar 

  101. Kim CH, Woo SI, Jeon SH (2000) Recovery of platinum-group metals from recycled automotive catalytic converters by carbochlorination. Ind Eng Chem Res 39(5):1185–1192. https://doi.org/10.1021/ie9905355

    Article  Google Scholar 

  102. Shen SB, Hao XF, Yang GW (2009) Kinetics of selective removal of iron from chromite by carbochlorination in the presence of sodium chloride. J Alloys Compd 476(1–2):653–661. https://doi.org/10.1016/j.jallcom.2008.09.109

    Article  Google Scholar 

  103. Kanari N, Gaballah I, Allain E (1999) A study of chromite carbochlorination kinetics. Metall Mater Trans B Process Metall Mater Process Sci 30:577–587. https://doi.org/10.1007/s11663-999-0018-5

    Article  Google Scholar 

  104. Djona M, Allain E, Gaballah I (1995) Kinetics of chlorination and carbochlorination of molybdenum trioxide. Metall Mater Trans B Process Metall Mater Process Sci 26:703–710. https://doi.org/10.1007/BF02651716

    Article  Google Scholar 

  105. Anderson A, Mishra B (2005) Investigation of the carbochlorination process for conversion of cerium and neodymium oxides into their chlorides. J Sustain Metall 1:189–198. https://doi.org/10.1007/s40831-015-0023-7

    Article  Google Scholar 

  106. Schnöckel H, Eberlein RA, Plitt HS (1992) Infrared spectra of matrix isolated ClCO and ab initio calculation. J Chem Phys 97(4):4–7. https://doi.org/10.1063/1.463980

    Article  Google Scholar 

  107. Stringer J, Banerjee DD (1991) Chlorine in coal: proceedings of an international conference, Elsevier, Amsterdam, pp 195–206

  108. Yudovich YE, Ketris MP (2006) Chlorine in coal: a review. Int J Coal Geol 67(1–2):127–144. https://doi.org/10.1016/j.coal.2005.09.004

    Article  Google Scholar 

  109. Guibaldo CN, Pomiro FJ, De Micco G, Bohé AE (2016) Infrared study of the carbochlorination of MoO3 with gaseous chlorine below 703 K. Thermoch Acta 627:9–19. https://doi.org/10.1016/j.tca.2016.01.017

    Article  Google Scholar 

  110. Gonzalez J, Ruiz MDC, Bohé A, Pasquevich D (1999) Oxidation of carbons in the presence of chlorine. Carbon 37(12):1979–1988. https://doi.org/10.1016/S0008-6223(99)00063-9

    Article  Google Scholar 

  111. Brocchi EA, Navarro RCS, Moura FJ (2013) A chemical thermodynamics review applied to V2O5 chlorination. Thermoch Acta 559:1–16. https://doi.org/10.1016/j.tca.2013.01.025

    Article  Google Scholar 

  112. Li Y, Duan DP, Liu Y, Yang XM (2017) Reaction thermodynamics of Al2O3, Fe2O3, and SiO2 during carbochlorination process. Chem Lett 46(5):775–777. https://doi.org/10.1246/cl.161166

    Article  Google Scholar 

  113. Pasquevich L, Gamboa J, Caneiro A (1992) On the role of carbon in the carbochlorination refractory oxides. Thermochim Acta 209:209–222. https://doi.org/10.1016/0040-6031(92)80200-G

    Article  Google Scholar 

  114. Walters A, Lusty P, Hill A (eds) (2011) Rare earth elements. British Geological Survey, Nottingham

  115. Rhee KI, Sohn HY (1990) The selective chlorination of iron from llmenite ore by CO-Cl2 mixtures: part I. intrinsic kinetics. Metall Trans B 21(2):321–330. https://doi.org/10.1007/BF02664200

    Article  Google Scholar 

  116. Kim J, Lee YR, Jung EJ (2021) A study on the roasting process for efficient selective chlorination of ilmenite ores. JOM 73:1495–1502. https://doi.org/10.1007/s11837-021-04620-2

    Article  Google Scholar 

  117. Royen H, Fortkamp U (2016) Rare earth elements – purification, separation and recycling. IVL Swedish Environmental Research Institute, Stockholm

  118. Cen P, Bian X, Liu Z, Gu M, Wu W, Li B (2021) Extraction of rare earths from bastnaesite concentrates: a critical review and perspective for the future. Miner Eng 171:107081. https://doi.org/10.1016/j.mineng.2021.107081

    Article  Google Scholar 

  119. Ozaki T, Machida K, Adachi G (1999) Extraction and mutual separation of rare earths from used polishes by chemical vapor transport. Metall Mater Trans B Process Metall Mater Process Sci 30B:45–51. https://doi.org/10.1007/s11663-999-0005-x

    Article  Google Scholar 

  120. Joint-Stock Company Solikamsk Magnesium Works (2016) Annual Report 2015. Solikamsk

  121. Talens Peiró L, Villalba Méndez G (2013) Material and energy requirement for rare earth production. JOM 65:1327–1340. https://doi.org/10.1007/s11837-013-0719-8

    Article  Google Scholar 

  122. Yang F (2012) Situation and policies for China’s rare earth industry. Information Office of the State Council, The People's Republic of China

  123. Wang L, Huang X, Yu Y, Zhao L, Wang C, Feng Z, Cui D, Long Z (2017) Towards cleaner production of rare earth elements from bastnaesite in China. J Clean Prod 165:231–242. https://doi.org/10.1016/j.jclepro.2017.07.107

    Article  Google Scholar 

  124. Bergeron M, Langlais A, Ourriban M, Pelletier P (2016) Dry chlorination process to produce anhydrous rare earth chlorides. Patent EP-3077338-B1

  125. Meshram RN (2011) Strategic value of Indian rare earth minerals. POSRI Chindia Q 2:103–110

Download references

Acknowledgments

The financial support from Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Ministerio de Ciencia, Tecnología e Innovación Productiva, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico J. Pomiro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomiro, F.J., Gaviría, J.P., Fouga, G.G. et al. A Panoramic Overview of Chlorination and Carbochlorination of Light Rare Earth Oxides, Including Thermodynamic, Reaction Mechanism, and Kinetic Aspects. Mining, Metallurgy & Exploration 38, 2467–2484 (2021). https://doi.org/10.1007/s42461-021-00490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-021-00490-z

Keywords

Navigation