Skip to main content
Log in

A Review of Recent Advances in Pyrometallurgical Process Measurement and Modeling, and Their Applications to Process Improvement

  • Review
  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

The pyrometallurgical industry plays a vital role in producing metals for our modern life. With growing demand of metals and declining grade of mineable ore, innovations become critical for many mining companies. It is necessary to conduct a review of recent improvements to the pyrometallurgical industry on analytical measurement techniques, process and equipment improvements, and computer-based modeling/simulations. Many of those innovations tend to be applied to wider metals, and not be restricted by a specific metal. Therefore, we tried to cover the wide applications of many improvements to wider range of metals to reflect this trend. The challenge of a lack of robust measurement techniques under high-temperature conditions within a furnace hinders optimization of a pyrometallurgical process. Some future opportunities in the pyrometallurgical industry on analytical measurement techniques, computer modeling, and processes and equipment have also been outlined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  1. Habashi F (2005) Fire and the art of metals: a short history of pyrometallurgy. Miner Process Ext Metall 114(3):165–171

    Google Scholar 

  2. British Geological Survey (2020) World mineral production 2014-2018. British Geological Survey, Keyworth, Nottingham, In

    Google Scholar 

  3. Reuter M, Boin U, Schaik A, Verhoef E (2003) Pyrometallurgy: the key to sustainable use of materials. XXII International Mineral Processing Congress, 128-149

  4. Anderson A, Grogan J, Bogin B, Taylor PR (2018) Computational fluid dynamic modeling of a secondary lead reverberatory furnace. In: Extraction 2018. TMS, Peter Hayes symposium on pyrometallurgical processing, pp 881–890

    Google Scholar 

  5. Sargsyan LY, Hovhannisyan AM (2010) Roasting of the sulfide-zinc concentrate with predominant obtaining of sulfate roast for effective leaching. Russian J Non-Ferrous Metals 51(3):212–216

    Google Scholar 

  6. Huntley D (2012) How the pieces all came together: In Ironbridge Gorge. Br Herit 33(3):48–53

    Google Scholar 

  7. Du W-T, Jiang Q, Chen Z, Liang X-P, Wang Y (2019) Experimental characterization of CO2 and CaCO3 used in a pyrometallurgical vanadium-extraction process. Jom 71(12):4925–4930

    Google Scholar 

  8. Moskalyk R, Alfantazi A (2003) Review of copper pyrometallurgical practice: today and tomorrow. Miner Eng 16(10):893–919

    Google Scholar 

  9. Kojo IV, Jokilaakso A, Hanniala P (2000) Flash smelting and converting furnaces: a 50 year retrospect in. JOM 52(2):57–61

    Google Scholar 

  10. Kojo IV, Storch H (2006) Copper production with OUTOKUMPU flash smelting: an update in Sohn International Symposium ADVANCED PROCESSING OF METALS AND MATERIALS, VOLUME 8. Int Symp Sulfide Smelting 225-238

  11. Bacedoni M, Moreno-Ventas I, Ríos G (2020) Copper flash smelting process balance modeling. Metals 2020(10):1229

    Google Scholar 

  12. Ćirković M, Trujić V, Bugarin M (2014) Synergy of energy resources of copper pyrometallurgy in RTB Bor-Serbia. Metall Mater Eng 20(4):261–274

    Google Scholar 

  13. OECD (2018) OECD POLICY HIGHLIGHTS Government Support for Primary and Secondary Metal Production. Available: https://www.oecd.org/environment/waste/Policy-Highlights-Government-Support-for-Metal-Production.pdf ().

  14. Davis JR (Ed.) (2001) Copper and copper alloys. ASM international

    Google Scholar 

  15. Bergman TL, Incropera FP, DeWitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer. John Wiley & Sons

  16. Callister WD, Rethwisch DG (2011) Materials science and engineering (Vol. 5, pp. 344-348). NY: John Wiley & sons

  17. Ellingham HJT (1944) Reducibility of oxides and sulphides in metallurgical processes. J Soc Chem Ind Lond 63(5):125

    Google Scholar 

  18. Hasegawa M (2014) Chapter 3.3 - Ellingham Diagram. Treatise on Process Metallurgy, Volume 1: Process Fundamentals, Pages 507-516

  19. Steinacker SR, Antrekowitsch J (2016) Kinetic investigation of the electric furnace copper slag treatment. In: Hwang JY et al (eds) 7th International Symposium on High-Temperature Metallurgical Processing. Springer, Cham

    Google Scholar 

  20. Yañez J, Torres S, Sbarbaro D, Parra R, Saavedra C (2018) Analytical instrumentation for copper pyrometallurgy: challenges and opportunities. IFAC-PapersOnLine 51(21):251–256

    Google Scholar 

  21. Saleem A, Underhill PR, Chataway D, Gerritsen T, Sadri A (2019) Krause TW (2019) Effect of metal proximity on remote electromagnetic detection of molten metal level in pyrometallurgical furnaces. AIP Conf Proc 2102:080005. https://doi.org/10.1063/1.5099813

    Article  Google Scholar 

  22. Bellemans I, Wilde ED, Moelans N, Verbeken K (2018) Metal losses in pyrometallurgical operations-a review. Adv Colloid Interf Sci, 255: 47–63, Metal losses in pyrometallurgical operations - A review

  23. De Wilde E, Bellemans I, Zheng L, Campforts M, Guo M, Blanpain B, Verbeken K (2016) Origin and sedimentation of Cu-droplets sticking to spinel solids in pyrometallurgical slags. Mater Sci Technol 32(18):1911–1924

    Google Scholar 

  24. Bååth L (1997) U.S. Patent No. 5,629,706. Washington, DC: U.S. Patent and Trademark Office

  25. Bååth L (2011) U.S. Patent No. 8,044,843. Washington, DC: U.S. Patent and Trademark Office

  26. Goff TJ, Brogden N, Nilsson JP, Bloemer P, Lyons A, (2011) Implementation of an alternative matte-level measurement solution at Lonmin Marikana Smelter Division for improved process monitoring. South African Pyrometallurgy, Southern African Institute of Mining and Metallurgy, Johannesburg, pp. 269–284, 6-9 March, 2011

  27. Saleem A, Underhill PR, Chataway D, Gerritsen T, Sadri A, Krause TW (2019) Electromagnetic measurement of molten metal level in pyrometallurgical furnaces. IEEE Trans Instrum Meas:1–1

  28. Visuri V (2014) OULU 2014 University of Oulu Faculty of Technology Process Metallurgy Group

  29. Komarov SV, Kuwabara M, Abramov OV (2005) High power ultrasonics in pyrometallurgy: current status and recent development. ISIJ Int 45(12):1765–1782

    Google Scholar 

  30. Rojas LP, Garreton AZ (2004) U.S. Patent No. 6,787,099. Washington, DC: U.S. Patent and Trademark Office

  31. Hoffmann L, Müller MS, Krämer S, Giebel M, Schwotzer G, Wieduwilt T (2007) Applications of fibre optic temperature measurement. Proc Estonian Acad Sci Eng 13(4):363–378

    Google Scholar 

  32. Sakaran RL, van Rooyen Q, van Manen PK, Mukumbe PP (2018) Analysis and interpretation of fibre optic temperature data at the Polokwane Smelter. J Southern African Inst Min Metall 118:337–344

    Google Scholar 

  33. Devia M, Parra R, Queirolo C, Sánchez M, Wilkomirsky I (2019) Copper smelting and converting: past and present Chilean developments. Miner Process Ext Metall 128(1-2):108–116

    Google Scholar 

  34. Istadia I, Bindar Y (2014) Improved cooler design of electric arc furnace refractory in mining industry using thermal analysis modeling and simulation. Appl Therm Eng 73(1):1129–1140

    Google Scholar 

  35. Jones RT (2009) Towards commercialisation of Mintek’s ConRoast process for platinum smelting, Nickel and Cobalt 2009: Advances in the Processing of Nickel. Cobalt and PGMs using Pyrometallurgical Techniques, 48th Annual Conference of Metallurgists, Sudbury, Ontario, Canada, 23-26 August 2009. pp. 159-168

  36. Jones RT, Geldenhuys IJ, Reynolds QG (2009) Recovery of base metals and PGMs in a DC alloy-smelting furnace. J South Afr Inst Min Metall 109:587–592

    Google Scholar 

  37. Jones RT, Geldenhuys IJ (2011) The pros and cons of reductive matte smelting for PGMs. Miner Eng 24:495–498

    Google Scholar 

  38. Jones RT, Reynolds QG, Curr TR, Sager D (2011) Some myths about DC furnaces. In R.T Jones and P den Hoed (Eds.) Southern African pyrometallurgy 2011. SAIMM, Johannesburg, March 2011. p 15-31

  39. Jones RT (2015) Fundamental aspect of alloy smelting in a DC arc furnace. A Thesis submitted to the faculty of engineering and the built environment. In fulfilment of the requirements for the degree of doctor of philosophy, University of the Witwatersrand, Johannesburg

  40. Ponou J, Garrouste M, Dodbiba G, Fujita T, Ahn J (2019) Sulfation–roasting–leaching–precipitation processes for selective recovery of erbium from bottom ash. Sustainability 11:3461

    Google Scholar 

  41. Wang J, Zhang W, Dong Y, Zhang X (2010) U.S. Patent 2010/0107821 A1. Washington, DC: U.S. Patent and Trademark Office

  42. Ebin B, Isik MI (2016) Pyrometallurgical processes for the recovery of metals from WEEE. In WEEE Recycling :107-137

  43. Kreusch MA, Ponte MJJS, Ponte HA, Kaminari NMS, Marino CEB, Mymrin V (2007) Technological improvements in automotive battery recycling. Resour Conserv Recycl 52(2):368–380

    Google Scholar 

  44. Liu C, Sun SC, Zhu XP, Tu GF, Zhang JY (2019) Recovery of platinum from the spent auto-catalysts by pyrometallurgy. Materials Science and Engineering, IOP Conference Series, p 479

    Google Scholar 

  45. Shuey S, Taylor P, (2004) A review of pyrometallurgical treatment of electronic scrap. SME Annual Meeting, Feb 23-25

  46. Borisov D (2019) Slag quantity minimization in the pyrometallurgical production of anode copper. J Chem Technol Metall 54:1047–1060

    Google Scholar 

  47. Chen C (2015) Application of MPE model to iron ore sintering, ironmaking and steelmaking processes. Steel Res Int 86:612–618

    Google Scholar 

  48. Chen C, Lu L, Jiao K (2019) Thermodynamic modelling of iron ore sintering reactions. Minerals 9:361

    Google Scholar 

  49. Hidayat T, Shishin D, Decterov SA, Hayes PC (2017) Jak E (2017) High-temperature experimental and thermodynamic modelling research on the pyrometallurgical processing of copper. AIP Conf Proc 1805:040004. https://doi.org/10.1063/1.4974425

    Article  Google Scholar 

  50. Hidayat T, Henao HM, Hayes PC, Jak E (2012) Phase equilibria studies of the Cu-Fe-O-Si system in equilibrium with air and with metallic copper. Metall Mater Trans B 43(5):1034–1045

    Google Scholar 

  51. Jak E, Hayes PC, Lee HG (1995) Improved methodologies for the determination of high temperature phase equilibria. Met Mater 1(1):1–8

    Google Scholar 

  52. Jak E, Hidayat T, Prostakova V, Shishin D, Shevchenko M, Hayes P (2019) Integrated experimental and thermodynamic modelling research for primary and recycling pyrometallurgy. Proceedings of the 10th European Metallurgical Conference. EMC 2019:587–604

    Google Scholar 

  53. Jak E (2018) Modelling metallurgical furnaces—making the most of modern research and development techniques. Miner Metals Mater Ser Extr 2018:103–125

    Google Scholar 

  54. Jak E (2018) The role of research in pyrometallurgy technology development—from fundamentals to process improvements—future opportunities. Miner Metals Mater Ser Extr 2018:19–37

    Google Scholar 

  55. Jones RT, Erwee MW (2016) Simulation of ferro-alloy smelting in DC arc furnaces using Pyrosim and FactSage. CALPHAD 55:20–25

    Google Scholar 

  56. Shishin D, Hayes P, Jak E (2019) Development and applications of thermodynamic database in copper smelting. Copper ’19 Conference at Vancouver, BC, Canada.

  57. Voronov GV, Antropov MV, Glukhov IV (2015) Gas dynamics in the working space of a modern electric-arc steelmaking furnace. Refract Ind Ceram 55(6):498–500

    Google Scholar 

  58. Schlesinger ME, Sole KC, Davenport WG (2011) Extractive metallurgy of copper. Elsevier

  59. Kalinin VT, Khrychikov VE, Krivosheyev VA, Seliverstov VY, Dotsenko YV, Kondrat AA (2010a) Advanced technologies of cast iron complex alloying and inoculation for mining and smelting equipment parts casting. Metall Min Ind 2(1):13–16

    Google Scholar 

  60. Kalinin VT, Khrychikov VE, Krivosheyev VA, Menyailo EV (2010b) Theory and practice of cast-iron inoculation by ultra-and nanodispersed materials. Metall Min Ind, 2(5): 341-347

  61. Oxley A, Barcza N (2013) Hydro–pyro integration in the processing of nickel laterites. Miner Eng 54:2–13

    Google Scholar 

  62. Geldenhuis JMA, Miller D, Van Beek B, Ndlovu J, Hara KT (2004) Development of alternative techniques for matte level measurements in sulfide smelting furnaces. In International Platinum Conference Platinum Adding Value: 25-32

  63. Wu TY, Guo N, Teh CY, Hay JXW (2013) Theory and fundamentals of ultrasound. In Advances in ultrasound technology for environmental remediation (pp. 5-12). Springer, Dordrecht.

  64. Matsushita T, Watanabe T, Hayashi M, Mukai K (2011) Thermal, optical and surface/interfacial properties of molten slag systems. Int Mater Rev 56:287–323

    Google Scholar 

  65. Sadri A, Ying WL, Erskine J, MacRosty R (2016) Smelting furnace non-destructive testing (NDT) and monitoring. Proceedings of the 19th World Conference on Nondestructive Testing2016, Munich, 13-17 June. NDT.net/Curran Associates. pp. 1-12

  66. Tian J, Tanaka A, Hou Q, Chen X (2019) Radar detection-based modeling in a blast furnace: a prediction model of burden surface descent speed. Metals 9:609

    Google Scholar 

  67. Drenoyanis A, Raad R, Wady I, Krogh C (2019) Implementation of an IoT based radar sensor network for wastewater management. Sensors 19(2):254

    Google Scholar 

  68. Agrawal A, Kor SC, Nandy U, Choudhary AR, Tripathi VR (2016) Real-time blast furnace hearth liquid level monitoring system, Ironmak. Steelmak. 43(7):550–558

    Google Scholar 

  69. Agrawal A, Vishwakarma RK, Tripathi VK, Kothari AK, Prasad B, Kumar J, Ghosh U, Tiwari M, Kundu S, Agarwal MK, Murthy GSR (2017) Improvement in casting practice by controlling the drainage rate and hearth liquid level to develop an efficient casthouse management practice in blast furnace. Ironmak Steelmak 46:373–382. https://doi.org/10.1080/03019233.2017.1400732

    Article  Google Scholar 

  70. Agrawal A, Anil Kumar Kothari AK, Ramna RV, Padmapal SMK (2019) A review on liquid level measurement techniques using mathematical models and field sensors in blast furnace. Metall Res Technol 116:307

    Google Scholar 

  71. Hopf M (2014) Monitoring the wear of water-cooled tap-hole blocks by the OPTISAVE fibre optic method. Proceedings of the Furnace Tapping Conference. Southern African Institute of Mining and Metallurgy, Johannesburg, pp 33–50

    Google Scholar 

  72. Peng X, Jin C (2012) Patent. Lead Smelting Equipment. Patent No. CN202582230 (U). European Patent Office

  73. Cui Z, Wang Z, Zhao B, Chen J, Wang H, Bian R, Yu P (2013) New scrap copper smelting technology. Patent No. CN103468955 (A). European Patent Office

  74. Zhao B, Cui Z, Wang Z (2013) A new copper smelting technology–bottom blown oxygen furnace developed at Dongying Fangyuan Nonferrous Metals. In 4th international symposium on high-temperature metallurgical processing, TMS, Warrendale (pp. 3-10)

  75. Aleksashin AL, Schnaltzger I, Hollias G (2007) Creation and growth of oxygen-converter steelmaking. Metallurgist 51(1-2):60–65

    Google Scholar 

  76. Hogg B, Nikolic S, Voigt P, Telford P (2018) ISASMELT™ technology for sulfide smelting. Miner Metals Mater Ser Extr 2018:149–158

    Google Scholar 

  77. Tang K (2018) Comprehensive study of flow and chemical reactions in a submerged lance copper smelting furnace. Doctoral dissertation, Purdue University

    Google Scholar 

  78. Schaaf M, Gómez Z, Cipriano A (2010) Real-time hybrid predictive modeling of the Teniente Converter. J Process Control 20(2):3–17

    Google Scholar 

  79. Kovačič M, Stopar K, Vertniky R, Šarler B (2019) Comprehensive electric arc furnace electric energy consumption modeling: a pilot study. Energies 12:2142

    Google Scholar 

  80. Madias J (2014) Chapter 1.5. Electric furnace steelmaking. In: McLean A, Guthrie R, Sridhar S (eds) Treatise on process metallurgy, vol 3A: industrial processes. Elsevier, Amsterdam, pp 271–297

    Google Scholar 

  81. Fanutti G, Pozzi M (2004) Environmental control and the CONSTEEL process. Millennium Steel, pp 106–110

  82. Jones JAT, Bowman B, Lefrank PA (1998) Electric furnace steelmaking, in The Making, Shaping and Treating of Steel, Fruehan RJ, Editor. Pittsburgh.p, The AISE Steel Foundation, pp 525–660

    Google Scholar 

  83. Manning CP, Fruehan RJ (2001) Emerging technologies for iron and steelmaking. Jom 53(10):36–43

    Google Scholar 

  84. Toulouevski YN, Zinurov IY (2013) Modern steelmaking in electric arc furnaces: history and development. In: Innovation in Electric Arc Furnaces. Springer, Berlin/Heidelberg, Germany, pp 1–24

    Google Scholar 

  85. Fu WG, Wen YC, Xie HE (2011) Development of intensified technologies of vanadium-bearing titanomagnetite smelting. J Iron Steel Res Int 18(4):7–10

    Google Scholar 

  86. Daavittila J, Honkaniemi M, Jokinen P (2004) The transformation of ferrochromium smelting technologies during the last decades. J South Afr Inst Min Metall 104(9):541–549

    Google Scholar 

  87. Sun T, Kennedy MW, Yurramendi L, Aldana JL, Rio CD, Arnout S, Tranell G, Aune RE (2017) Pyrometallurgical treatment of apatite concentrate with the objective of rare earth element extraction: Part I. J Sustain Metall 3(4):829–845

    Google Scholar 

  88. Bernardis FL, Grant RA, Sherrington DC (2005) A review of methods of separation of the platinum-group metals through their chloro-complexes. React Funct Polym 65:205–217

    Google Scholar 

  89. McDougall I, Eksteen JJ, Pyromet T (2012) Sidewall design to improve lining life in a platinum smelting furnace. In International Smelting Technology Symposium (Incorporating the 6th advances in Sulfide Smelting Symposium), TMS (The Minerals, Metals &Materials Society), Warrendale, PA (pp. 47-54).

  90. Verscheure K, Kyllo A, Filzwieser A, Blanpain B, Wollants P (2006) Furnace cooling technology in pyrometallurgical processes. Non-Ferrous Mater Extr Process 4:139–154

    Google Scholar 

  91. Bernfeld G, Bird A, Edwards R, Köpf H, Köpf-Maier P, Raub C, Riele W, Simon F, Westwood W (1985) Review on the recovery of the platinum-group metals. Platinum, (1-23)

  92. Shaw A, De Villiers LPVs, Hundermark RJ, Ndlovu J, Nelson LR, Pieterse B, Sullivan R, Voermann N, Walker C, Stober F, Mckenzie AD (2012) Challenges and solutions in PGM furnace operation: high matte temperature and copper cooler corrosion. J South Afr Inst Min Metall, 113: 251-261

  93. Malan WT, Akdogan G, Bradshaw S, Bezuidenhout GA (2015) The recovery of platinum group metals from low- grade concentrates to an iron alloy using silicon carbide as reductant. J South Afr Inst Min Metall 115:375–383

    Google Scholar 

  94. Wang YY, Yang HF, Jiang B, Song RL, Zhang WH (2018) Comprehensive recovery of lead, zinc, and iron from hazardous jarosite residues using direct reduction followed by magnetic separation. Int J Miner Metall Mater 25(2):123–130

    Google Scholar 

  95. Colombini E, Papalia K, Barozzi S, Perugi F, Veronesi P (2020) A novel microwave and induction heating applicator for metal making: design and testing. Metals 10:676

    Google Scholar 

  96. García-Baños B, Catalá-Civera JM, Sánchez JR, Navarrete L, López-Buendía AM, Schmidt L (2020) High temperature dielectric properties of iron- and zinc-bearing products during carbothermic reduction by microwave heating. Metals 10:693

    Google Scholar 

  97. Willner J, Fornalczyk A, Cebulski J, Janiszewski K (2014) Preliminary studies on simultaneous recovery of precious metals from different waste materials by pyrometallurgical method. Arch Metall Mater 59:801–804

    Google Scholar 

  98. Wang H, Zhang S, Li B, Pan DA, Wu Y, Zuo T (2017) Recovery of waste printed circuit boards through pyrometallurgical processing: a review. Resour Conserv Recycl 126:209–218

    Google Scholar 

  99. Khaliq A, Rhamdhani MA, Brooks G, Masood S (2014) Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources 3(1):152–179

    Google Scholar 

  100. Bale CW, Belisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, Jung IH, Kang YB, Melancon J, Pelton AD, Robelin C, Petersen S (2009) FactSage thermochemical software and databases—recent developments. CALPHAD 33:295–311

    Google Scholar 

  101. Andersson JO, Helander T, Hoglund L, Shi P, Sundman B (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26:273–312

    Google Scholar 

  102. Davies RH, Dinsdale AT, Gisby JA, Robinson JAJ, Martin SM (2002) MTDATA-thermodynamic and phase equilibrium software from the National Physical Laboratory, CALPHAD, 26: 229–271, MTDATA - thermodynamic and phase equilibrium software from the national physical laboratory

  103. Zhang L, Jahanshahi S, Sun S, Lim M, Bourke B, Wright S, Somerville M (2001) Development and applications of models for pyrometallurgical processes. Mater Forum 25:136–153

    Google Scholar 

  104. Avarmaa K, O’Brien H, Johto H, Taskinen P (2015) Equilibrium distribution of precious metals between slag and copper matte at 1250–1350 °C. J Sustain Metall 1:216–228

    Google Scholar 

  105. Gisby J, Taskinen P, Pihlasalo J, Li Z, Tyrer M, Pearce J, Avarmaa K, Björklund P, Davies H, Korpi M, Martin S, Pesonen L, Robinson J (2017) MTDATA and the prediction of phase equilibria in oxide systems: 30 years of industrial collaboration. Metall Mater Trans B 48(1):91–98

    Google Scholar 

  106. Taskinen P (2017) Industrial use of thermodynamic simulations in pyrometallurgy. AIP Conf Proc 1805:020001

    Google Scholar 

  107. Thermo-Calc (2020) www.thermocalc.com (accessed by 11 October 2020)

  108. Outotec HSC Chemistry software (2020) https://www.outotec.com/products-and-services/technologies/digital-solutions/hsc-chemistry/ (accessed by October 11 2020)

  109. Abadías Llamas A, Bartie NJ, Heibeck M, Stelter M, Reuter MA (2020) Resource efficiency evaluation of pyrometallurgical solutions to minimize iron-rich residues in the roast-leach-electrowinning process. In: Siegmund A., Alam S., Grogan J., Kerney U., Shibata E. (eds) PbZn 2020: 9th International Symposium on Lead and Zinc Processing. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-37070-1_31

  110. Wahlström R (2017) A platform for dynamic process simulation demonstrated with a Peirce-Smith converter model. Aalto University, Master’s Thesis

    Google Scholar 

  111. Xie W, Li X (2019) The applications of electrical resistance tomography for multiphase flows in mineral processing. In IMPC 2018 - 29th International Mineral Processing Congress (pp. 1392-1401). (IMPC 2018 - 29th International Mineral Processing Congress). Canadian Institute of Mining, Metallurgy and Petroleum

  112. Boulet B, Lalli G, Ajersch M (2003) Modeling and control of an electric arc furnace. Am Control Conf: IEEE 2003:3060–3064

    Google Scholar 

  113. Chibwe D, Akdogan G, Aldrich C, Eriç RH (2011) CFD modelling of global mixing parameters in a Peirce-Smith converter with comparison to physical modelling. Chem Prod Process Model 6(1):1–28

    Google Scholar 

  114. Chibwe D, Akdogan G, Taskinen P, Eksteen J (2015) Modelling of fluid flow phenomena in Pierce-Smith copper converters and analysis of combined blowing concept. SA IMM J 115(5):363–374

    Google Scholar 

  115. Haywood R (2003) Process optimisation and design of a belt furnace for nickel oxide reduction. Proceedings of the Third International Conference on Computational Fluid Dynamics in the Minerals & Process Industries, CSIRO Australia, 10-12 December, Melbourne, Australia.

  116. Iwamasa PK, Caffery GA, Warnica WD (1997) Alias SR (1997) Modelling of iron flow, heat transfer, and refractory wear in the hearth of an iron blast furnace. CSIRO, Inter Conf on CFD in Mineral & Metal Processing and Power Generation

    Google Scholar 

  117. Schwarz MP (1996) Simulation of gas injection into liquid melts. Appl Math Model 20:41–51

    MATH  Google Scholar 

  118. Yang Y, Zhou B, Post JR, Scheepers E, Reuter MA, Boom R (2006) computational fluid dynamics simulation of pyrometallurgical processes. In Fifth International Conference on CFD in the Process Industries, CSIRO, Melbourne, Australia,13-15 December 2006.

  119. Dudka S, Adriano DC (1997) Environmental impacts of metal ore mining and processing: a review. J Environ Qual 26(3):590–602

    Google Scholar 

  120. Li X, Monnens W, Li Z, Fransaer J, Binnemans K (2020) Solvometallurgical process for extraction of copper from chalcopyrite and other sulfidic ore minerals. Green Chem 22:417–426

    Google Scholar 

  121. Buekens A, Stieglitz L, Huang H, Cornelis E (1998) Formation of dioxin in industrial combustors and pyrometallurgical plants. Environ Eng Sci 15(1):29–36

    Google Scholar 

  122. Selin NE, Selin H (2006) Global politics of mercury pollution: the need for multi-scale governance, Reciel 15 (3). ISSN 0962:8797

    Google Scholar 

  123. Berndt ME (2003) Mercury and mining in Minnesota. Minerals Coordinating Committee Final Report Minnesota Department of Natural Resources (2003)

  124. Trpčevská J, Hoľková B, Briančin J, Korálová K, Pirošková J (2015) The pyrometallurgical recovery of zinc from the coarse-grained fraction of zinc ash by centrifugal force. Int J Miner Process 143:25–33

    Google Scholar 

  125. Nowinska K (2020) Mineralogical and chemical characteristics of slags from the pyrometallurgical extraction of zinc and lead. Minerals 10:371

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Xie.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laputka, M., Xie, W. A Review of Recent Advances in Pyrometallurgical Process Measurement and Modeling, and Their Applications to Process Improvement. Mining, Metallurgy & Exploration 38, 1135–1165 (2021). https://doi.org/10.1007/s42461-021-00386-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-021-00386-y

Keywords

Navigation