Skip to main content

Preliminary Evaluation of Carbon Dioxide, Oxygen, and Hydrogen for Promoting Chromite Liberation by Breakage

Abstract

Mineral liberation is one of the primary objectives in comminution circuits for the downstream separation of valuable minerals. Breaking minerals through their grain boundaries (grain-boundary breakage) enables mineral liberation in their natural grain size, removing the need for intensive grinding. This study aimed to evaluate if gaseous carbon dioxide, oxygen, or hydrogen can be used as grinding additives to promote the liberation of chromite grains by grain-boundary breakage. For this purpose, chromite ore particles in the −9.53 + 6.35 mm size fraction were pretreated by exposing them to carbon dioxide, oxygen, or hydrogen flow. Then, the untreated and pretreated samples were broken in a drop-weight tester under the same conditions. Finally, the grade-recovery plots of chromite grains in the selected progeny size fractions and the overall progeny distributions were measured and compared. Pretreatment with carbon dioxide flow was found beneficial for grain-boundary breakage. It significantly enhanced the liberation of coarse chromite grains along with the overall progeny fineness. EPMA analysis showed that the adsorption of carbon dioxide seems to reduce aluminum concentration at grain boundaries, which could be the reason for grain-boundary weakening. These results suggest that carbon dioxide can be used as a grinding additive, reducing the carbon footprint of the mining industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Leißner T, Hoang DH, Rudolph M et al (2016) A mineral liberation study of grain boundary fracture based on measurements of the surface exposure after milling. Int J Miner Process 156:3–13. https://doi.org/10.1016/j.minpro.2016.08.014

    Article  Google Scholar 

  2. Leißner T, Duong HH, Rudolph M, et al (2016) Investigation of mineral liberation by transgranular and intergranular fracture after milling. In: XXVIII International Mineral Processing Congress Proceedings. Canadian Institute of Mining, Metallurgy and Petroleum

  3. Mariano RA, Evans CL, Manlapig E (2016) Definition of random and non-random breakage in mineral liberation - a review. Miner Eng 94:51–60. https://doi.org/10.1016/j.mineng.2016.05.005

    Article  Google Scholar 

  4. Andres U, Bialecki R (1986) Liberation of mineral constituents by high-voltage pulses. Powder Technol 48:269–277. https://doi.org/10.1016/0032-5910(86)80052-3

    Article  Google Scholar 

  5. Bradt RC, Lin CL, Miller JD, Chi G (1995) Interfacial fracture of multiphase particles and its influence on liberation phenomena. Miner Eng 8:359–366. https://doi.org/10.1016/0892-6875(95)00001-7

    Article  Google Scholar 

  6. King RP, Schneider CL (1998) Mineral liberation and the batch communition equation. Miner Eng 11:1143–1160. https://doi.org/10.1016/S0892-6875(98)00102-2

    Article  Google Scholar 

  7. Santurbano RB (1993) An experimental and analytical study of the mechanics of rock particle fragmentation during impact crushing. University of Minnesota, Minneapolis

    Google Scholar 

  8. Camalan M, Hoşten Ç (2016) Linking impact-related progeny sizes of cement clinker to modes of single-particle breakage. E3S Web Conf 8:1–7. https://doi.org/10.1051/e3sconf/20160801010

    Article  Google Scholar 

  9. Camalan M (2020) Correlating common breakage modes with impact breakage and ball milling of cement clinker and chromite. Int J Min Sci Technol. https://doi.org/10.1016/j.ijmst.2020.03.017

  10. Middlemiss S (2007) Surface damage effects in single particle comminution. Int J Miner Process 84:207–220. https://doi.org/10.1016/j.minpro.2007.03.001

    Article  Google Scholar 

  11. Schubert W, Khanal M, Tomas J (2005) Impact crushing of particle–particle compounds—experiment and simulation. Int J Miner Process 75:41–52. https://doi.org/10.1016/j.minpro.2004.01.006

    Article  Google Scholar 

  12. Khanal M, Schubert W, Tomas J (2008) Compression and impact loading experiments of high strength spherical composites. Int J Miner Process 86:104–113. https://doi.org/10.1016/j.minpro.2007.12.001

    Article  Google Scholar 

  13. Shengzhi W (2003) Theoretical and experimental studies on dynamic impact on brittle solids. The Hong Kong Polytechnic University, Hong Kong

    Google Scholar 

  14. Papadopoulos DG (1998) Impact breakage of particulate solids. University of Surrey, Surrey

    Google Scholar 

  15. Gorham DA, Salman AD (2005) The failure of spherical particles under impact. Wear 258:580–587. https://doi.org/10.1016/j.wear.2004.09.012

    Article  Google Scholar 

  16. Schönert K (2004) Breakage of spheres and circular discs. Powder Technol 143–144:2–18. https://doi.org/10.1016/j.powtec.2004.04.004

    Article  Google Scholar 

  17. Antonyuk S, Tomas J, Heinrich S, Mörl L (2005) Breakage behaviour of spherical granulates by compression. Chem Eng Sci 60:4031–4044. https://doi.org/10.1016/j.ces.2005.02.038

    Article  Google Scholar 

  18. Subero J, Ghadiri M (2001) Breakage patterns of agglomerates. Powder Technol 120:232–243. https://doi.org/10.1016/S0032-5910(01)00276-5

    Article  Google Scholar 

  19. Antonyuk S, Khanal M, Tomas J et al (2006) Impact breakage of spherical granules: experimental study and DEM simulation. Chem Eng Process Process Intensif 45:838–856. https://doi.org/10.1016/j.cep.2005.12.005

    Article  Google Scholar 

  20. Kolmogorov AN (1941) A log-normal distribution for particle breakage. Dokl Akad Nauk SSSR 31(99)

  21. Halmos PR (1944) Random Alms. Ann Math Stat 15:182–189

    MathSciNet  Article  Google Scholar 

  22. Epstein B (1948) Logarithmico-Normal distribution in breakage of solids. Ind Eng Chem 40:2289–2291. https://doi.org/10.1021/ie50468a014

    Article  Google Scholar 

  23. Shimizu K, Grow EL (1988) History, genesis, and properties. In: Crow EL, Shimizu K (eds) Lognormal distributions theory and applications. Taylor & Francis, Boca Raton, pp 1–26

  24. Herrmann HJ, Wittel FK, Kun F (2006) Fragmentation. Phys A Stat Mech its Appl 371:59–66. https://doi.org/10.1016/j.physa.2006.04.087

    Article  Google Scholar 

  25. Domokos G, Kun F, Sipos AA, Szabo T (2015) Universality of fragment shapes. Sci Rep 5:1–6. https://doi.org/10.1038/srep09147

    Article  Google Scholar 

  26. Carmona HA, Wittel FK, Kun F, Herrmann HJ (2008) Fragmentation processes in impact of spheres. Phys Rev E - Stat Nonlinear, Soft Matter Phys 77:1–10. https://doi.org/10.1103/PhysRevE.77.051302

    Article  Google Scholar 

  27. Wittel FK, Carmona HA, Kun F, Herrmann HJ (2008) Mechanisms in impact fragmentation. Int J Fract 154:105–117. https://doi.org/10.1007/s10704-008-9267-6

    Article  MATH  Google Scholar 

  28. Wills BA, Finch JA (2016) Wills’ mineral processing technology. Elsevier, Amsterdam, pp 147–179

    Book  Google Scholar 

  29. Eisele TC, Kawatra SK (2006) Design of iron ore comminution circuits to minimize overgrinding. In: Kawatra SK (ed) Advances in comminution. Society for Mining, Metallurgy, and Exploration, Littleton, pp 309–320

  30. Fuerstenau DW (1995) Grinding aids. KONA Powder Part J 13:5–18. https://doi.org/10.14356/kona.1995006

    Article  Google Scholar 

  31. Singh V, Dixit P, Venugopal R, Venkatesh KB (2018) Ore pretreatment methods for grinding: journey and prospects. Miner Process Extr Metall Rev:1–15. https://doi.org/10.1080/08827508.2018.1479697

  32. Austin LG, Klimpel RR, Luckie PT (1984) Process engineering of size reduction: ball milling. SME/AIME, New York

    Google Scholar 

  33. Wang Y, Forssberg E (1995) Dispersants in stirred ball mill grinding. KONA Powder Part J 13:67–77. https://doi.org/10.14356/kona.1995011

    Article  Google Scholar 

  34. El-Shall H, Somasundaran P (1984) Physico-chemical aspects of grinding: a review of use of additives. Powder Technol 38:275–293. https://doi.org/10.1016/0032-5910(84)85009-3

    Article  Google Scholar 

  35. Somasundaran P, Lin IJ (1972) Effect of the nature of environment on comminution processes. Ind Eng Chem Process Des Dev 11:321–331. https://doi.org/10.1021/i260043a001

    Article  Google Scholar 

  36. Camalan M (2018) The influence of chemical pre-treatment on particle fracture pattern and mineral liberation. Middle East Technical University, Ankara

  37. Chipakwe V, Semsari P, Karlkvist T et al (2020) A critical review on the mechanisms of chemical additives used in grinding and their effects on the downstream processes. J Mater Res Technol 9:8148–8162. https://doi.org/10.1016/j.jmrt.2020.05.080

    Article  Google Scholar 

  38. Camalan M, Hoşten Ç (2019) Assessment of grinding additives for promoting chromite liberation. Miner Eng 136:18–35. https://doi.org/10.1016/j.mineng.2019.03.004

    Article  Google Scholar 

  39. Camalan M (2020) Investigating the effects of water pretreatments on chromite liberation. Can Metall Q 59:116–124. https://doi.org/10.1080/00084433.2020.1715694

    Article  Google Scholar 

  40. Schuiling RD, Krijgsman P (2006) Enhanced weathering: an effective and cheap tool to sequester CO2. Clim Chang 74:349–354. https://doi.org/10.1007/s10584-005-3485-y

    Article  Google Scholar 

  41. Lackner KS (2003) Climate change: a guide to CO2 sequestration. Science (80) 300:1677–1678. https://doi.org/10.1126/science.1079033

    Article  Google Scholar 

  42. Ho TM, Howes T, Bhandari BR (2014) Encapsulation of gases in powder solid matrices and their applications: a review. Powder Technol 259:87–108. https://doi.org/10.1016/j.powtec.2014.03.054

    Article  Google Scholar 

  43. Yoga K, Harrison LG (1984) Reactions of solids with gases other than oxygen. In: Bamford CH, Tipper CFH, Compton RG (eds) Comprehensive chemical kinetics, vol 21: reactions of solids with gases. Elsevier, Amsterdam, pp 119–146

  44. Cuthrell RE, Randich E (1979) The embrittling effects of hydrogen on a variety of inorganic materials as indicated by acoustic emission. J Mater Sci 14:2563–2566. https://doi.org/10.1007/BF00610623

    Article  Google Scholar 

  45. Dwivedi SK, Vishwakarma M (2018) Hydrogen embrittlement in different materials: a review. Int J Hydrog Energy 43:21603–21616. https://doi.org/10.1016/j.ijhydene.2018.09.201

    Article  Google Scholar 

  46. Trambouze P, Euzen J-P (2005) Chemical reactors: from design to operation. Éditions Technip, Paris

    Google Scholar 

  47. Shirzad M, Karimi M, Silva JAC, Rodrigues AE (2019) Moving bed reactors: challenges and Progress of experimental and theoretical studies in a century of research. Ind Eng Chem Res 58:9179–9198. https://doi.org/10.1021/acs.iecr.9b01136

    Article  Google Scholar 

  48. Camalan M, Çavur M, Hoşten Ç (2017) Assessment of chromite liberation spectrum on microscopic images by means of a supervised image classification. Powder Technol 322:214–225. https://doi.org/10.1016/j.powtec.2017.08.063

    Article  Google Scholar 

  49. Camalan M, Çavur M (2020) Development of a supervised classification method to construct 2D mineral maps on backscattered electron images. Turkish J Electr Eng Comput Sci 28:1030–1043. https://doi.org/10.3906/elk-1906-60

    Article  Google Scholar 

  50. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  51. Arganda-Carreras I, Kaynig V, Rueden C et al (2017) Trainable Weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33:2424–2426. https://doi.org/10.1093/bioinformatics/btx180

    Article  Google Scholar 

  52. Lind R (2012) Open source software for image processing and analysis: picture this with ImageJ. In: Forster M (ed) Open source software in life science research. Woodhead, Cambridge, pp 131–149

  53. Camalan M, Önal MAR (2016) Influence of high-pressure grinding rolls on physical properties and impact breakage behavior of coarsely sized cement clinker. Part Sci Technol 34:278–288. https://doi.org/10.1080/02726351.2015.1075636

    Article  Google Scholar 

  54. Blenkinsop TG, Fernandes TRC (2000) Fractal characterization of particle size distributions in chromitites from the great dyke, Zimbabwe. Pure Appl Geophys 157:505–521. https://doi.org/10.1007/PL00001104

    Article  Google Scholar 

  55. Christiansen FG (1986) Deformation of chromite: S.E.M. investigations. Tectonophysics 121:175–196. https://doi.org/10.1016/0040-1951(86)90042-9

    Article  Google Scholar 

  56. Taşdemir A (2008) Evaluation of grain size distribution of unbroken chromites. Miner Eng 21:711–719. https://doi.org/10.1016/j.mineng.2008.01.010

    Article  Google Scholar 

  57. Andres U, Timoshkin I, Jirestig J, Stallknecht H (2001) Liberation of valuable inclusions in ores and slags by electrical pulses. Powder Technol 114:40–50. https://doi.org/10.1016/S0032-5910(00)00260-6

    Article  Google Scholar 

  58. Kingman SWW, Jackson K, Cumbane A et al (2004) Recent developments in microwave-assisted comminution. Int J Miner Process 74:71–83. https://doi.org/10.1016/j.minpro.2003.09.006

    Article  Google Scholar 

  59. Parker T, Shi F, Evans C, Powell M (2015) The effects of electrical comminution on the mineral liberation and surface chemistry of a porphyry copper ore. Miner Eng 82:101–106. https://doi.org/10.1016/j.mineng.2015.03.019

    Article  Google Scholar 

  60. Scott G, Bradshaw SM, Eksteen JJ (2008) The effect of microwave pretreatment on the liberation of a copper carbonatite ore after milling. Int J Miner Process 85:121–128. https://doi.org/10.1016/j.minpro.2007.08.005

    Article  Google Scholar 

  61. Zuo W, Shi F, Manlapig E (2014) Electrical breakdown channel locality in high voltage pulse breakage. Miner Eng 69:196–204. https://doi.org/10.1016/j.mineng.2014.08.006

    Article  Google Scholar 

  62. Wang E, Shi F, Manlapig E (2012) Mineral liberation by high voltage pulses and conventional comminution with same specific energy levels. Miner Eng 27–28:28–36. https://doi.org/10.1016/j.mineng.2011.12.005

    Article  Google Scholar 

  63. Ali AY, Bradshaw SM (2011) Confined particle bed breakage of microwave treated and untreated ores. Miner Eng 24:1625–1630. https://doi.org/10.1016/j.mineng.2011.08.020

    Article  Google Scholar 

  64. Zhong C, Xu C, Lyu R et al (2018) Enhancing mineral liberation of a Canadian rare earth ore with microwave pretreatment. J Rare Earths 36:215–224. https://doi.org/10.1016/j.jre.2017.08.007

    Article  Google Scholar 

  65. Singh V, Obed Samuelraj I, Venugopal R et al (2015) Study the effect of electrical and mechanical shock loading on liberation and milling characteristics of mineral materials. Miner Eng 70:207–216. https://doi.org/10.1016/j.mineng.2014.09.023

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the BAP unit of the Middle East Technical University [grant number BAP-03-05-2017-001]. The authors would like to thank Dr. Çetin Hoşten for valuable communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Camalan.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camalan, M., Önal, M.A.R. Preliminary Evaluation of Carbon Dioxide, Oxygen, and Hydrogen for Promoting Chromite Liberation by Breakage. Mining, Metallurgy & Exploration 38, 37–45 (2021). https://doi.org/10.1007/s42461-020-00330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-020-00330-6

Keywords

  • Carbon dioxide
  • Grain-boundary breakage
  • Mineral liberation
  • Adsorption