Skip to main content

Kinetics of Atmospheric Leaching from a Brazilian Nickel Laterite Ore Allied to Redox Potential Control


The kinetics of atmospheric sulfuric acid leaching from a Brazilian nickel laterite ore was assessed using distinct reducing agents and ore mineralogy. This transitional ore contains 1.63% Ni distributed as 1.27% in coarse size (− 500 + 150 μm), mainly as silicates (lizardite and chlorite — 28.6%), and 2.06% in the fines fraction (− 75 μm), mainly as iron oxy-hydroxides (goethite and hematite — 49%). The effects of temperature, acid concentration, reducing reagent type, and concentration were evaluated. The − 75 μm fraction limited the leaching efficiency and the use of reducing media with thiosulfate improved leaching and Ni-Fe selectivity. However, at constant Eh of 626–743 mV and a pH range between 0.2 and 1.1, no substantial rise in metals extraction, except for Co and Mn, has been observed. In order to determine the process control at 95 °C, two regions in the extraction curves were used in combination with the shrinking core model. Control by porous diffusion was observed and the kinetic constant was found to be in the order kFe<kNi<kMn<kCo<kMg for atmospheric leaching without Eh control. In reducing media for the first 15 min of leaching, the kinetic constant was found to be kFe<kNi<kMg≅kCo<kMn as derived from Ni disseminated into iron oxides structures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Survey USG (2020) Mineral commodity summaries 2020. U.S. Geological Survey. doi:

  2. 2.

    Norgate T, Jahanshahi S (2010) Low grade ores—smelt, leach or concentrate? Miner Eng 23(2):65–73.

    Article  Google Scholar 

  3. 3.

    Andersen JCØ, Rollinson GK, Snook B, Herrington R, Fairhurst RJ (2009) Use of QEMSCAN® for the characterization of Ni-rich and Ni-poor goethite in laterite ores. Miner Eng 22(13):1119–1129.

    Article  Google Scholar 

  4. 4.

    Farrokhpay S, Filippov L (2016) Challenges in processing nickel laterite ores by flotation. Int J Miner Process 151:59–67.

    Article  Google Scholar 

  5. 5.

    Mohammadreza F, Mohammad N, Ziaeddin SS (2014) Nickel extraction from low grade laterite by agitation leaching at atmospheric pressure. Int J Min Sci Technol 24(4):543–548.

    Article  Google Scholar 

  6. 6.

    Quast K, Connor JN, Skinner W, Robinson DJ, Addai-Mensah J (2015) Preconcentration strategies in the processing of nickel laterite ores Part 1: Literature review. Miner Eng 79:261–268.

    Article  Google Scholar 

  7. 7.

    Elias M (2002) Nickel laterite deposits—geological overview, resources and exploitation. Giant Ore Depositis: Charact Gen Explor: CODES Spec Publ 4(CODES Special Publication 4):205–220

    Google Scholar 

  8. 8.

    Canterford J (1978) Leaching of some Australian nickeliferous laterites with sulphuric acid at atmospheric pressure. Proceedings of the Australasian Institute of Mining and Metallurgy (265):19-26

  9. 9.

    McDonald RG, Whittington BI (2008) Atmospheric acid leaching of nickel laterites review. Hydrometallurgy 91(1-4):35–55.

    Article  Google Scholar 

  10. 10.

    MacCarthy J, Nosrati A, Skinner W, Addai-Mensah J (2015) Acid leaching and rheological behaviour of a siliceous goethitic nickel laterite ore: Influence of particle size and temperature. Miner Eng 77:52–63.

    Article  Google Scholar 

  11. 11.

    MacCarthy J, Nosrati A, Skinner W, Addai-Mensah J (2016) Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low grade saprolitic nickel laterite ore. Hydrometallurgy 160:26–37.

    Article  Google Scholar 

  12. 12.

    Panda L, Rao DS, Mishra BK, Das B (2014) Characterization and dissolution of low-grade ferruginous nickel lateritic ore by sulfuric acid. Miner Metall Process 31(1):57–65.

    Article  Google Scholar 

  13. 13.

    Das GK, de Lange JAB (2011) Reductive atmospheric acid leaching of West Australian smectitic nickel laterite in the presence of sulphur dioxide and copper(II). Hydrometallurgy 105(3-4):264–269.

    Article  Google Scholar 

  14. 14.

    Li G, Rao M, Jiang T, Huang Q, Peng Z (2011) Leaching of limonitic laterite ore by acidic thiosulfate solution. Miner Eng 24(8):859–863.

    Article  Google Scholar 

  15. 15.

    Liu K, Chen Q, Hu H (2009) Comparative leaching of minerals by sulphuric acid in a Chinese ferruginous nickel laterite ore. Hydrometallurgy 98(3-4):281–286.

    Article  Google Scholar 

  16. 16.

    Luo W, Feng Q, Ou L, Zhang G, Lu Y (2009) Fast dissolution of nickel from a lizardite-rich saprolitic laterite by sulphuric acid at atmospheric pressure. Hydrometallurgy 96(1-2):171–175.

    Article  Google Scholar 

  17. 17.

    Thubakgale CK, Mbaya RKK, Kabongo K (2013) A study of atmospheric acid leaching of a South African nickel laterite. Miner Eng 54:79–81.

    Article  Google Scholar 

  18. 18.

    Luo J, Li G, Rao M, Peng Z, Zhang Y, Jiang T (2015) Atmospheric leaching characteristics of nickel and iron in limonitic laterite with sulfuric acid in the presence of sodium sulfite. Miner Eng 78:38–44.

    Article  Google Scholar 

  19. 19.

    Levenspiel O (2006) Chemical Reaction Engineering. 3rd edn. Wiley India Pvt. Limited

  20. 20.

    Fan R, Gerson AR (2013) Mineralogical characterisation of Indonesian laterites prior to and post atmospheric leaching. Hydrometallurgy 134-135:102–109.

    Article  Google Scholar 

  21. 21.

    Pickles CA (2004) Microwave heating behaviour of nickeliferous limonitic laterite ores. Miner Eng 17(6):775–784.

    Article  Google Scholar 

  22. 22.

    Watling HR, Elliot AD, Fletcher HM, Robinson DJ, Sully DM (2011) Ore mineralogy of nickel laterites: controls on processing characteristics under simulated heap-leach conditions. Aust J Earth Sci 58(7):725–744.

    Article  Google Scholar 

  23. 23.

    Astuti WHT, Sasaki K, Okibe N (2015) Kinetics of nickel extraction from Indonesian saprolitic ore by citric acid leaching under atmospheric pressure. Miner Metall Process 32(3):176–185.

    Article  Google Scholar 

  24. 24.

    Carvalho e Silva MLRYR, Tolentino HCN, Enzeweiler J, Netto SM, Alves MCM (2003) Incorporation of Ni into natural goethite an investigation by X-ray adsorption spectroscopy. Am Mineral 88:876–882.

    Article  Google Scholar 

  25. 25.

    Manceau A, Schlegel ML, Musso M, Sole VA, Gauthier C, Petit PE, Trolard F (2000) Crystal chemistry of trace elements in natural and synthetic goethite. Geochim Cosmochim Acta 64(21):3643–3661.

    Article  Google Scholar 

  26. 26.

    Puron AR (2001) Evidencias a favor de que la goethita es la principal portadora de niquel en los horizontes lateriticos de las cortezas ferroniqueliferas. Miner Geol 18(3-4):21–31

    Google Scholar 

  27. 27.

    Hunter HMA, Herrington RJ, Oxley EA (2013) Examining Ni-laterite leach mineralogy & chemistry – a holistic multi-scale approach. Miner Eng 54:100–109.

    Article  Google Scholar 

  28. 28.

    Ferron C, Henry P (2008) The use of ferrous sulphate to enhance the dissolution of cobaltic minerals. Presentation at Hydrometallurgy

  29. 29.

    Senanayake G, Childs J, Akerstrom BD, Pugaev D (2011) Reductive acid leaching of laterite and metal oxides—a review with new data for Fe(Ni,Co)OOH and a limonitic ore. Hydrometallurgy 110(1-4):13–32.

    Article  Google Scholar 

  30. 30.

    Cornell R, Posner A, Quirk J (1974) Crystal morphology and the dissolution of goethite. J Inorg Nucl Chem 36(9):1937–1946.

    Article  Google Scholar 

  31. 31.

    Chander S (1982) Atmospheric pressure leaching of nickeliferous laterites in acidic media. Trans Indian Inst Metals 35:365–371

    Google Scholar 

  32. 32.

    Sidhu P, Gilkes R, Cornell R, Posner A, Quirk J (1981) Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clay Clay Miner 29(4):269–276.

    Article  Google Scholar 

  33. 33.

    Lim-Nunez R, Gilkes R (1987) Acid dissolution of synthetic metalcontaining goethites and hematites. In: Schultz L, van Olphen H, Mumpton F (eds) Proceedings of the International Clay Conference. The Clay Minerals Society, Denver, USA, pp 197–204

    Google Scholar 

  34. 34.

    Senanayake G, Das G (2004) A comparative study of leaching kinetics of limonitic laterite and synthetic iron oxides in sulfuric acid containing sulfur dioxide. Hydrometallurgy 72(1-2):59–72.

    Article  Google Scholar 

  35. 35.

    Rice N, Strong L (1974) The leaching of lateritic nickel ores in hydrochloric acid. Can Metall Q 13(3):485–493.

    Article  Google Scholar 

  36. 36.

    Senanayake G (2003) A surface reaction kinetic model to compare the reductive leaching of iron from goethite, magnetite, and limonitic nickel laterite ores by acidic sulfur dioxide. Metall Mater Trans B 34(5):735–738.

    Article  Google Scholar 

  37. 37.

    Das G, Muir D, Senanayake G, Singh P, Hefter G (1997) Acid leaching of nickel laterites in the presence of sulphur dioxide at atmospheric pressure. Paper presented at the Hydrometallurgy and Refining of Nickel and Cobalt, Montreal, QC Canada, August 17-20

  38. 38.

    Kerker M (1951) The acid decomposition os sodium thiosulfate. J Chem Phys 19:1324–1325

    Article  Google Scholar 

  39. 39.

    Quaicoe I, Nosrati A, Skinner W, Addai-Mensah J (2014) Agglomeration and column leaching behaviour of goethitic and saprolitic nickel laterite ores. Miner Eng 65:1–8.

    Article  Google Scholar 

  40. 40.

    Liu K, Chen Q, Yin Z, Hu H, Ding Z (2012) Kinetics of leaching of a Chinese laterite containing maghemite and magnetite in sulfuric acid solutions. Hydrometallurgy 125-126:125–136.

    Article  Google Scholar 

  41. 41.

    Senanayake G, Das GK, de Lange A, Li J, Robinson DJ (2015) Reductive atmospheric acid leaching of lateritic smectite/nontronite ores in H2SO4/Cu(II)/SO2 solutions. Hydrometallurgy 152:44–54.

    Article  Google Scholar 

Download references


The authors wish to thank Brazilian research agencies FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Project Number 308044/2018-5) for financial support. The authors are also thankful to Vale Institute of Technology, and to Centro de Microscopia of Universidade Federal de Minas Gerais for analysis supports.

Author information



Corresponding authors

Correspondence to A. L. A. Santos or S. D. F. Rocha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santos, A.L.A., Becheleni, E.M.A., Viana, P.R.M. et al. Kinetics of Atmospheric Leaching from a Brazilian Nickel Laterite Ore Allied to Redox Potential Control. Mining, Metallurgy & Exploration 38, 187–201 (2021).

Download citation


  • Laterite ore characterization
  • Transitional Ni-laterite
  • Thiosulfate
  • Sulfur salts agents
  • Reducing leaching condition
  • Kinetic mechanism