Skip to main content

Advertisement

Log in

Effect of Operating Parameters on the Breakage Process of Calcite in a Stirred Media Mill

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

One of the most energy-intensive processes for producing submicron range calcite is stirred media mill. In the present work, numerous operating parameters such as solid mass fraction, grinding media size, media filling ratio, and grinding time have been investigated using a vertical type stirred media mill. The results are evaluated on the basis of mean particle size, specific surface area, and specific energy consumption. After conducting this study, optimum experimental conditions found to be as 70% media filling ratio, 25% solid mass fraction, 1 mm grinding media size, and 120 min grinding time. Besides, energy savings up to 22% were achieved with the choice of proper media size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Inam MA, Quattara S, Frances C (2011) Effects of concentration of dispersions on particle sizing during production of fine particles in wet grinding process. Powder Technol 208:329–336. https://doi.org/10.1016/j.powtec.2010.08.025

    Article  Google Scholar 

  2. Kwade A (2003) A stressing model for the description and optimization of grinding processes. Chem Eng Technol 26:199–205. https://doi.org/10.1002/ceat.200390029

    Article  Google Scholar 

  3. Bernhart C, Reinsdh E, Husemann K (1999) The influence of suspension properties on ultra-fine grinding in stirred ball mills. Powder Technol 105:357–361. https://doi.org/10.1016/S0032-5910(99)00159-X

    Article  Google Scholar 

  4. Mende S, Stenger F, Peukert W, Schwedes J (2003) Mechanical production and stabilization of submicron particles in stirred media mills. Powder Technol 132:6–73. https://doi.org/10.1016/S0032-5910(03)00042-1

    Article  Google Scholar 

  5. Quattara S, Frances C (2014) Grinding of calcite suspensions in a stirred media mill: effect of operational parameters on the product quality and the specific energy. Powder Technol 255:89–97. https://doi.org/10.1016/j.powtec.2013.11.025

    Article  Google Scholar 

  6. Stenger F, Mende S, Schwedes J, Peukert W (2005) Nanomilling in stirred media mills. Chem Eng Sci 60:4557–4565. https://doi.org/10.1016/j.ces.2005.02.057

    Article  Google Scholar 

  7. Wang Y, Forssberg E (2006) Production of carbonate and silica nano-particles in stirred bead milling. Int J Miner Process 81:1–14. https://doi.org/10.1016/j.minpro.2006.05.007

    Article  Google Scholar 

  8. Choi WS (1996) Grinding rate improvement using a composite grinding ball size for an ultra-fine grinding mill. J Soc Powder Technol 33:747–752. https://doi.org/10.4164/sptj.33.747

    Article  MathSciNet  Google Scholar 

  9. Choi H, Lee W, Lee J, Chung H, Choi W (2007) Ultra-fine grinding of inorganic powders by stirred ball mill: effect of process parameters on the particle size distribution of ground products and grinding energy efficiency. Met Mater Int 13:353–358. https://doi.org/10.1007/BF03027893

    Article  Google Scholar 

  10. Choi H, Wang L (2007) A quantitative study of grinding characteristics on particle size and grinding consumption energy by stirred ball mill. Kor J Mater Res 17:532–537. https://doi.org/10.3740/MRSK.2007.17.10.532

    Article  Google Scholar 

  11. Mankosa MJ, Adel GT, Yoon RH (1986) Effect of media size in stirred ball mill grinding of coal. Powder Technol 49:75–82. https://doi.org/10.1016/0032-5910(86)85008-2

    Article  Google Scholar 

  12. Shi F, Morrison R, Cervellin A, Burns F, Musa F (2009) Comparison of energy efficiency between ball mills and stirred mills in coarse grinding. Miner Eng 22:673–680. https://doi.org/10.1016/j.mineng.2008.12.002

    Article  Google Scholar 

  13. Shinohara K, Golman B, Uchiyama T, Otani M (1999) Fine-grinding characteristic of hard material by attrition mill. Powder Technol 103:292–296. https://doi.org/10.1016/S0032-5910(99)00042-X

    Article  Google Scholar 

  14. Garcia F, Le Bolay N, Frances C (2002) Changes of surface and volume properties of calcite during a batch wet grinding process. Chem Eng J 85:177–187. https://doi.org/10.1016/S1385-8947(01)00152-8

    Article  Google Scholar 

  15. Toraman OY, Katırcıoglu D (2011) A study on the effect of process parameters in stirred ball mill. Adv Powder Technol 22:26–30. https://doi.org/10.1016/j.apt.2010.02.018

    Article  Google Scholar 

  16. Austin LG, Klimpel RR, Luckie PT (1984) Process engineering of size reduction: ball milling. SME, New York 561 pp

    Google Scholar 

  17. Lecoq O, Guigon P, Pons MN (1999) A grindability test to study the influence of material processing on impact behavior. Powder Technol 105:21–29. https://doi.org/10.1016/S0032-5910(99)00114-X

    Article  Google Scholar 

  18. Jayasundara CT, Yang RY, Yu AB, Rubenstein J (2010) Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill. Int J Miner Process 96:27–35. https://doi.org/10.1016/j.minpro.2010.07.006

    Article  Google Scholar 

  19. Sadler LY III, Stanley DA, Brooks DR (1975) Attrition mill operating characteristics. Powder Technol 12:19–28. https://doi.org/10.1016/0032-5910(75)85004-2

    Article  Google Scholar 

  20. Hasegawa M, Kimata M, Shimane M, Shoji M, Tsuruta M (2001) The effect of liquid additives on dry ultrafine grinding of quartz. Powder Technol 114:145–151. https://doi.org/10.1016/S0032-5910(00)00290-4

    Article  Google Scholar 

  21. Le Garcia F, Bolay N, Trompette J, Frances C (2004) On the fragmentation and phenomena in an ultrafine wet grinding process: the role of polyelectrolyte additives. Int J Miner Process 74:43–54. https://doi.org/10.1016/j.minpro.2004.07.001

    Article  Google Scholar 

  22. Fuerstenau DW, Kapur PC (1994) A new approach to assessing the grindability of solids and the energy efficiency of grinding mills. Miner Metall Process 11:210–216

    Google Scholar 

  23. Kwade A, Schwedes J (2007) Wet grinding in stirred media mills. In Salman AD, Ghadiri M, Hounslow MJ (ed) Particle Breakage. Elsevier, Amsterdam, pp 251–382. https://doi.org/10.1016/S0167-3785(07)12009-1.

  24. Zheng J, Harris CC, Somasundaran P (1996) A study on grinding and energy input in stirred media mills. Powder Technol 86:171–178. https://doi.org/10.1016/0032-5910(95)03051-4

    Article  Google Scholar 

  25. Ding Z, Yin Z, Liu L, Chen Q (2007) Effect of grinding parameters on the rheology of pyrite–heptane slurry in a laboratory stirred media mill. Miner Eng 20:701–709. https://doi.org/10.1016/j.mineng.2007.01.005

    Article  Google Scholar 

  26. He M, Wang Y, Forssberg E (2006) Parameter effects on wet ultrafine grinding of limestone through slurry rheology in stirred media mill. Powder Technol 161:10–21. https://doi.org/10.1016/j.powtec.2005.08.026

    Article  Google Scholar 

  27. Kwade A, Blecher L, Schwedes J (1996) Motion and stress intensity of grinding beads in stirred media mill. Part 2: stress intensity and its effect on comminution. Powder Technol 86:69–76. https://doi.org/10.1016/0032-5910(95)03038-7

    Article  Google Scholar 

  28. Jankovic A (2003) Variables affecting the fine grinding of minerals using stirred mills. Miner Eng 16:337–345. https://doi.org/10.1016/S0892-6875(03)00007-4

    Article  Google Scholar 

  29. Wang Y, Forssberg E (2000) Product size distribution in stirred media mills. Miner Eng 13:459–465. https://doi.org/10.1016/S0892-6875(00)00025-X

    Article  Google Scholar 

  30. Mende S, Stenger F, Peukert W, Schwedes J (2004) Production of sub-micron particles by wet comminution in stirred media mills. J Mater Sci 39:5223–5226. https://doi.org/10.1023/B:JMSC.0000039214.12131.58

    Article  Google Scholar 

  31. Bel Fadhel H, Frances C (2001) Wet batch grinding of alumina in a stirred bead mill. Powder Technol 119:257–268. https://doi.org/10.1016/S0032-5910(01)00266-2

    Article  Google Scholar 

  32. Altun O, Benzer H, Enderle U (2013) Effects of operating parameters on the efficiency of dry stirred milling. Miner Eng 43–44:58–66. https://doi.org/10.1016/j.mineng.2012.08.003

    Article  Google Scholar 

  33. Patel CM, Murthy ZVP, Chakraborty M (2012) Effects of operating parameters on the production of barium sulfate nanoparticles in stirred media mill. J Ind Eng Chem 18:1450–1457. https://doi.org/10.1016/j.jiec.2012.02.005

    Article  Google Scholar 

Download references

Funding

This study was supported by the Research Fund of Istanbul University, Project No. 41598, and the authors acknowledge Mikron’s company for providing the sample for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diler Katircioglu-Bayel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katircioglu-Bayel, D., Ozkan, S.G. & Toraman, O.Y. Effect of Operating Parameters on the Breakage Process of Calcite in a Stirred Media Mill. Mining, Metallurgy & Exploration 36, 399–408 (2019). https://doi.org/10.1007/s42461-018-0008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-018-0008-8

Keywords

Navigation