Skip to main content
Log in

Improving Limitations of Rover Missions in the Moon and Planets by Unifying Vehicle–Terrain Interaction Models

  • Original Paper
  • Published:
Advances in Astronautics Science and Technology Aims and scope Submit manuscript

Abstract

This paper extends the analysis of empirical methods for describing vehicle–terrain interactions in lunar terrain. Given analytical formulation to predict mobility performance in extraterrestrial environments requires reliable in situ testing campaigns, this imposes fundamental restrictions to conceive a more consolidated theory, and further any possibility to use improved empirical methods to design better space hardware. Hence, we propose an analytical approach to extrapolate data taken in parabolic flights to model vehicle performance in multiple gravity regimes. The extrapolation technique and respective reported uncertainties can be used, therefore, to tune fitting parameters of a set of general formulas in the domain of Terramechanics, allowing to have empirical estimates of the wheel mobility in cases where testing is inherently very complex. Finally, by the analysis of previous Moon and Mars rover missions with the fitted equations, we report an empirical design criterion that allows to generate first estimates of the optimal wheel dimensions, taking into account the eventual longitudinal slip of the rover and including the desired mass of the payload. The introduced rules for geometry optimization can be important for future space rover missions in remote soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnson JB, Kulchitsky AV, Duvoy P, Iagnemma K, Senatore C, Arvidson RE, Moore J (2015) Discrete element method simulations of Mars Exploration Rover wheel performance. J Terramech 62:31

    Article  Google Scholar 

  2. Zhou F, Arvidson RE, Bennett K, Trease B, Lindemann R, Bellutta P, Iagnemma K, Senatore C (2014) Simulations of mars rover traverses. J Field Robot 31(1):141

    Article  Google Scholar 

  3. Chhaniyara S, Brunskill C, Yeomans B, Matthews M, Saaj C, Ransom S, Richter L (2012) Terrain trafficability analysis and soil mechanical property identification for planetary rovers: a survey. J Terramech 49(2):115

    Article  Google Scholar 

  4. Gao Y, Spiteri C, Pham MT, Al-Milli S (2014) A survey on recent object detection techniques useful for monocular vision-based planetary terrain classification. Robotics and autonomous systems 62(2):151

    Article  Google Scholar 

  5. Brooks CA, Iagnemma KD, Dubowsky S (2006) Visual wheel sinkage measurement for planetary rover mobility characterization. Auton Robots 21(1):55

    Article  Google Scholar 

  6. Spiteri C, Al-Milli S, Gao Y, de León AS (2015) Real-time visual sinkage detection for planetary rovers. Robot Auton Syst 72:307

    Article  Google Scholar 

  7. Al-Milli S, Spiteri C, Comin F, Gao Y (2013) IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 4675–4680

  8. Reina G, Ojeda L, Milella A, Borenstein J (2006) Wheel slippage and sinkage detection for planetary rovers. IEEE/ASME Trans Mechatron 11(2):185

    Article  Google Scholar 

  9. Reina G, Milella A, Panella F (2008) 15th international conference on mechatronics and machine vision in practice. IEEE, pp 75–80

  10. Gao Y, Spiteri C, Li CL, Zheng YC (2016) Lunar soil strength estimation based on Chang’E-3 images. Advances in Space Research 58(9):1893

    Article  ADS  Google Scholar 

  11. Jiang M, Dai Y, Cui L, Xi B (2017) Soil mechanics-based testbed setup for lunar rover wheel and corresponding experimental investigations. J Aerosp Eng 30(6):06017005

    Article  Google Scholar 

  12. Ding L, Gao H, Deng Z, Tao J (2010) Wheel slip-sinkage and its prediction model of lunar rover. J Cent S Univ Technol 17(1):129

    Article  Google Scholar 

  13. Zhang P, Deng Z, Hu M, Gao H (2008) IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, pp 120–125

  14. Nakashima H, Fujii H, Oida A, Momozu M, Kanamori H, Aoki S, Yokoyama T, Shimizu H, Miyasaka J, Ohdoi K (2010) Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain. J Terramech 47(5):307

    Article  Google Scholar 

  15. Ding L, Deng Z, Gao H, Nagatani K, Yoshida K (2011) Planetary rovers’ wheel–soil interaction mechanics: new challenges and applications for wheeled mobile robots. Intell Serv Robot 4(1):17

    Article  Google Scholar 

  16. Gouache TP, Brunskill C, Scott GP, Gao Y, Coste P, Gourinat Y (2010) Regolith simulant preparation methods for hardware testing. Planet Space Sci 58(14–15):1977

    Article  ADS  Google Scholar 

  17. Knuth MA, Johnson J, Hopkins M, Sullivan R, Moore J (2012) Discrete element modeling of a Mars Exploration Rover wheel in granular material. J Terramech 49(1):27

    Article  Google Scholar 

  18. Nakashima H, Fujii H, Oida A, Momozu M, Kawase Y, Kanamori H, Aoki S, Yokoyama T (2007) Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM. J Terramech 44(2):153

    Article  Google Scholar 

  19. Kobayashi T, Fujiwara Y, Yamakawa J, Yasufuku N, Omine K (2010) Mobility performance of a rigid wheel in low gravity environments. J Terramech 47(4):261

    Article  Google Scholar 

  20. Du Y, Gao J, Jiang L, Zhang Y (2017) Numerical analysis of lug effects on tractive performance of off-road wheel by DEM. J Braz Soc Mech Sci Eng 39(6):1977

    Article  Google Scholar 

  21. Sutoh M, Nagaoka K, Nagatani K, Yoshida K (2012) IEEE international conference on robotics and automation. IEEE, pp 3419–3424

  22. Sutoh M, Nagaoka K, Nagatani K, Yoshida K (2013) Design of wheels with grousers for planetary rovers traveling over loose soil. J Terramech 50(5–6):345

    Article  Google Scholar 

  23. Skonieczny K, Moreland SJ, Wettergreen DS (2012) IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 5065–5070

  24. Wettergreen D, Moreland S, Skonieczny K, Jonak D, Kohanbash D, Teza J (2010) Design and field experimentation of a prototype lunar prospector. Int J Robot Res 29(12):1550

    Article  Google Scholar 

  25. Cardile D, Viola N, Chiesa S, Rougier A (2012) Applied design methodology for lunar rover elastic wheel. Acta Astronaut 81(1):1

    Article  ADS  Google Scholar 

  26. Ding L, Gao H, Deng Z, Nagatani K, Yoshida K (2011) Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil. J Terramech 48(1):27

    Article  Google Scholar 

  27. Sutoh M, Yusa J, Ito T, Nagatani K, Yoshida K (2012) Traveling performance evaluation of planetary rovers on loose soil. J Field Robot 29(4):648

    Article  Google Scholar 

  28. Bekker MG (1960) Off-the-road locomotion: research and development in terramechanics. University of Michigan Press, Michigan

    Google Scholar 

  29. Ding L, Deng Z, Gao H, Tao J, Iagnemma KD, Liu G (2015) Interaction mechanics model for rigid driving wheels of planetary rovers moving on sandy terrain with consideration of multiple physical effects. J Field Robot 32(6):827

    Article  Google Scholar 

  30. Wong JY, Reece A (1967) Prediction of rigid wheel performance based on the analysis of soil-wheel stresses part I. Performance of driven rigid wheels. J Terramech 4(1):81

    Article  Google Scholar 

  31. Ding L et al (2015) Improved explicit-form equations for estimating dynamic wheel sinkage and compaction resistance on deformable terrain. Mechanism and Machine Theory 86:235

    Article  Google Scholar 

  32. Meirion-Griffith G, Nie C, Spenko M (2014) Development and experimental validation of an improved pressure-sinkage model for small-wheeled vehicles on dilative, deformable terrain. J Terramech 51:19

    Article  Google Scholar 

  33. Jia Z, Smith W, Peng H (2012) Terramechanics-based wheel-terrain interaction model and its applications to off-road wheeled mobile robots. Robotica 30(3):491

    Article  Google Scholar 

  34. Lyasko M (2010) Slip sinkage effect in soil-vehicle mechanics. J Terramech 47(1):21

    Article  Google Scholar 

  35. Bauer R, Barfoot T, Leung W, Ravindran G (2008) Dynamic simulation tool development for planetary rovers. Int J Adv Robot Syst 5(3):31

    Article  Google Scholar 

  36. Stein N, Arvidson R, Heverly M, Lindemann R, Trease B, Iagnemma K, Senatore C (2013) AGU Fall Meeting Abstracts

  37. Sullivan R, Anderson R, Biesiadecki J, Bond T, Stewart H (2011) Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs. J Geophys Res Planets 116(E2)

  38. Ding L, Deng Z, Gao H, Guo J, Zhang D, Iagnemma KD (2013) Experimental study and analysis of the wheels’ steering mechanics for planetary exploration wheeled mobile robots moving on deformable terrain. Int J Robot Res 32(6):712

    Article  Google Scholar 

  39. Carletti N (2016) Planetary rover mobility on loose soil: terramechanics theory for side slip prediction and compensation. https://www.politesi.polimi.it/handle/10589/128181

  40. Arvidson R, Anderson R, Haldemann A, Landis G, Li R, Lindemann R, Matijevic J, Morris R, Richter L, Squyres S et al (2003) Physical properties and localization investigations associated with the 2003 Mars Exploration rovers. J Geophys Res Planets 108(E12)

  41. Curiosity rover: facts and information (2009) https://www.space.com/17963-mars-curiosity.html. Accessed 13 May 2019

  42. Moore HJ, Bickler DB, Crisp JA, Eisen HJ, Gensler JA, Haldemann AF, Matijevic JR, Reid LK, Pavlics F (1999) Soil-like deposits observed by Sojourner, the Pathfinder rover. J Geophys Res Planets 104(E4):8729

    Article  Google Scholar 

  43. Exomars (2018) https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/exomars-2020. Accessed 13 May 2019

  44. Pruiksma J, Kruse G, Teunissen J, van Winnendael M (2011) 11th symposium on advanced space technologies in robotics and automation, Noordwijk, pp 12–14

  45. Carrier W, Olhoeft GR, Mendell W (1991) Lunar sourcebook, a user’s guide to the moon. Cambridge University Press, Cambridge

    Google Scholar 

  46. Colwell JE, Batiste S, Horányi M, Robertson S, Sture S (2007) Lunar surface: Dust dynamics and regolith mechanics. Reviews of Geophysics, 45(2)

  47. Kanamori H et al (1998) Space 98, pp 462–468

Download references

Acknowledgements

We acknowledge Prof. Taizo Kobayashi for sharing his original data of parabolic flights and earth-based experiments. The authors thank the computational resources provided by Thubath-Kaal HPC Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amenosis Jose Ramon Lopez-Arreguin.

Appendices

Appendix A: Set of Time-Domain Equations for \(z^\mathrm{I}\)

1.1 A.1 Defining Extrapolation Hypothesis for Sinkage Functions

There are three forms do define functions of the type \(z^{\mathrm{I}}\): (i) as parallel lines to h(m) sharing the same slope but different intersect, (ii) sharing the same intersect but having different slopes, and (iii) intersecting h(m) in a point but having distinct slopes and intersects. Only the first two can be quantified, from which the parallel line hypothesis was tested in Sect. 3. For the second method, if the slope of \(z^{\mathrm{I}}(m,g_{\mathrm{ex}})\) differs from h(m) by \(\alpha \):

$$\begin{aligned} z^{\mathrm{I}}(m,g_{4})=\left( a'+\alpha '\,(m_4,g_{\mathrm{ex}})\right) \,m+b' \pm \epsilon _{hf}. \end{aligned}$$

Term \(\alpha \) will be defined as

$$\begin{aligned} \alpha \,(m_4,g_{\mathrm{ex}})={\left\{ \begin{array}{ll} \frac{f(g_{\mathrm{ex}})-b'}{m_4},\, \text {if } g_{\mathrm{ex}}\ne g_4 \\ 0,\, \text {if } g_{\mathrm{ex}}=g_4. \end{array}\right. } \end{aligned}$$

Notice the error \(\epsilon _{hf}\) will be defined similarly as in Sect. 3.

1.2 A.2 Statistical Error for \(z^I\) and \(z^{II}\) Functions

In the case of h(m) and \(f(g_{\mathrm{ex}})\) functions, the standard errors for the estimate will serve to address the propagation of error in \(z^{\mathrm{I}}\) and \(z^{\mathrm{II}}\) formulae. The \(\epsilon _h\) within 90% of confidence at specific masses in OGE (Fig. 4), we can have in millimeters:

$$\begin{aligned} \begin{bmatrix} \epsilon _h\,(m_1,s_1)\\ \epsilon _h\,(m_1,s_2)\\ \epsilon _h\,(m_1,s_3)\\ \epsilon _h\,(m_1,s_4)\\ \epsilon _h\,(m_1,s_5)\\ \epsilon _h\,(m_1,s_6)\\ \epsilon _h\,(m_1,s_7) \end{bmatrix}=&\begin{bmatrix} 1.9\\ 1.29\\ 3.07\\ 3.54\\ 5.79\\ \mathrm{N/A}\\ \mathrm{N/A} \end{bmatrix}; \begin{bmatrix} \epsilon _h\,(m_2,s_1)\\ \epsilon _h\,(m_2,s_2)\\ \epsilon _h\,(m_2,s_3)\\ \epsilon _h\,(m_2,s_4)\\ \epsilon _h\,(m_2,s_5)\\ \epsilon _h\,(m_2,s_6)\\ \epsilon _h\,(m_2,s_7) \end{bmatrix}\\ =&\begin{bmatrix} 1.42\\ 0.99\\ 2.36\\ 2.72\\ 4.46\\ \mathrm{N/A}\\ \mathrm{N/A} \end{bmatrix}; \begin{bmatrix} \epsilon _h\,(m_3,s_1)\\ \epsilon _h\,(m_3,s_2)\\ \epsilon _h\,(m_3,s_3)\\ \epsilon _h\,(m_3,s_4)\\ \epsilon _h\,(m_3,s_5)\\ \epsilon _h\,(m_3,s_6)\\ \epsilon _h\,(m_3,s_7) \end{bmatrix}= \begin{bmatrix} 1.2\\ 0.86\\ 2.06\\ 2.37\\ 3.88\\ \mathrm{N/A}\\ \mathrm{N/A} \end{bmatrix}\\ \begin{bmatrix} \epsilon _h\,(m_4,s_1)\\ \epsilon _h\,(m_4,s_2)\\ \epsilon _h\,(m_4,s_3)\\ \epsilon _h\,(m_4,s_4)\\ \epsilon _h\,(m_4,s_5)\\ \epsilon _h\,(m_4,s_6)\\ \epsilon _h\,(m_4,s_7) \end{bmatrix}=&\begin{bmatrix} 1.18\\ 0.86\\ 2.04\\ 2.36\\ 3.86\\ \mathrm{N/A}\\ \mathrm{N/A} \end{bmatrix}; \begin{bmatrix} \epsilon _h\,(m_5,s_1)\\ \epsilon _h\,(m_5,s_2)\\ \epsilon _h\,(m_5,s_3)\\ \epsilon _h\,(m_5,s_4)\\ \epsilon _h\,(m_5,s_5)\\ \epsilon _h\,(m_5,s_6)\\ \epsilon _h\,(m_5,s_7) \end{bmatrix}= \begin{bmatrix} 2.53\\ 1.74\\ 4.13\\ 4.77\\ 7.08\\ \mathrm{N/A}\\ \mathrm{N/A} \end{bmatrix}, \end{aligned}$$

where in \(s_6\) and \(s_7\), uncertainties cannot be defined with accuracy due to the only few data available. With the purpose to apply Eq. 12 and find the propagated error for \(z^{\mathrm{I}}\), thus \(\epsilon _f\,(g_{\mathrm{ex}},s_i)\) shall be defined. Errors for \(f(g_{\mathrm{ex}})\) predictions in the Moon and Earth will be

$$\begin{aligned} \begin{bmatrix} \epsilon _f\,(g_1,s_1)\\ \epsilon _f\,(g_1,s_2)\\ \epsilon _f\,(g_1,s_3)\\ \epsilon _f\,(g_1,s_4)\\ \epsilon _f\,(g_1,s_5)\\ \epsilon _f\,(g_1,s_6)\\ \epsilon _f\,(g_1,s_7) \end{bmatrix}= \begin{bmatrix} 1.28\\ 1.17\\ 0.81\\ 1.5\\ 4.39\\ 3.02\\ 6.91 \end{bmatrix};\begin{bmatrix} \epsilon _f\,(g_4,s_1)\\ \epsilon _f\,(g_4,s_2)\\ \epsilon _f\,(g_4,s_3)\\ \epsilon _f\,(g_4,s_4)\\ \epsilon _f\,(g_4,s_5)\\ \epsilon _f\,(g_4,s_6)\\ \epsilon _f\,(g_4,s_7) \end{bmatrix}= \begin{bmatrix} 0.86\\ 0.78\\ 0.54\\ 1.02\\ 2.36\\ 1.46\\ 4.83. \end{bmatrix} \end{aligned}$$

Now, the associated uncertainties reported in Table 1 for \(z_{\mathrm{Bekk}}\) involve several sources of error: propagated by the \(z^{\mathrm{I}}\) functions with regard to the measured data, and the Bekker’s formula itself that fits \(z^{\mathrm{I}}\) with \(R^2 >97\%\). Considering only the first, the static sinkage prediction for, e.g., the Yutu rover using the values set initially is

$$\begin{aligned} \epsilon _{hf}^{I}&=\sqrt{\epsilon ^{2}_{h}\left( 22.4 \,\text { kg},s_1\right) +\epsilon ^{2}_{f}({g_1,s_1)+\epsilon ^{2}_{h}(m_4,s_1)}}\\&=\sqrt{(2.99)^2+(1.28)^2+(1.18)^2} =3.45. \end{aligned}$$

Now, in the high slip regime a similar procedure can be established:

$$\begin{aligned} \epsilon _{hf}^{I}&=\sqrt{\epsilon ^{2}_{h}\left( 22.4 \,\text { kg}, s_3\right) +\epsilon ^{2}_{f}({g_1,s_3)+\epsilon ^{2}_{h}(m_4,s_3)}}\\&=\sqrt{(4.85)^2+(0.81)^2+(2.04)^2}=5.23. \end{aligned}$$

The process is repeated to obtain Luna and LRV errors, knowing \(\epsilon _{h}\left( 94.5 \text { kg},s_1\right) =17.54\), \(\epsilon _{h}\left( 94.5 \text { kg},s_3\right) =27.79\), \(\epsilon _{h}\left( 177 \text { kg},s_1\right) =34.43\), \(\epsilon _{h}\left( 177 \text { kg},s_1\right) =54.45\). Although a \(90\%\) confidence interval certainly makes prediction errors to be very large, it is important to see this uncertainty is more tolerable at lower masses.

1.3 A.3 Functions \(z^\mathrm{I}\)

The following equations relate the \(z^{\mathrm{I}}\) and \(z^{\mathrm{II}}\) functions from the previous analysis, as function of slip (or time).

$$\begin{aligned} \begin{bmatrix} z^{\mathrm{I}}(m,g_{\mathrm{ex}},s_1)\\ z^{\mathrm{I}}(m,g_{\mathrm{ex}},s_2)\\ z^{\mathrm{I}}(m,g_{\mathrm{ex}},s_3)\\ z^{\mathrm{I}}(m,g_{\mathrm{ex}},s_4)\\ z^{\mathrm{I}}(m,g_{\mathrm{ex}},s_5)\\ z^{\mathrm{I}}(m,g_{\mathrm{ex}},s_6)\,\\ z^{\mathrm{I}}(m,g_{\mathrm{ex}},s_7) \end{bmatrix}&= \begin{bmatrix} -1.856\\ -4.618\\ -3.167\\ -0.343\\ 5.656\\ 2.228\\ 2.1 \end{bmatrix}+ \begin{bmatrix} 0.231\\ 0.145\\ 0.018\\ -0.057\\ -0.362\\ 0.128\\ 0.244 \end{bmatrix}\,g_{\mathrm{ex}}\nonumber \\&\quad + \begin{bmatrix} 0.436\\ 1.343\\ 1.768\\ 1.834\\ 1.937\\ 1.91\\ 1.92 \end{bmatrix}\,m \end{aligned}$$

By the model proposed in Eq. 16, sinkage functions can be used to define a set of \(n_o\) and \(n_1\) that minimize the error expressed by the following formula:

$$\begin{aligned} z^{I}(D,m,g_{\mathrm{ex}},t_i)=\left[ \frac{3\,m\,g_{\mathrm{ex}}}{D^{0.5+(n_o+n_1\,m\,g_{\mathrm{ex}})} \,b\,k\,(3-n_o)}\right] ^\frac{1}{n_o+\frac{1}{2}}. \end{aligned}$$

Notice the fitting parameters will depend in the case of \(z^{\mathrm{I}}\) functions, in a fixed \(g_{\mathrm{ex}}\) and \(t_i\). Thus, for Earth, we have

$$\begin{aligned} \begin{bmatrix} n_o (z^{\mathrm{I}},g_4,s_1)\\ n_o(z^{\mathrm{I}},g_4,s_2)\\ n_o(z^{\mathrm{I}},g_4,s_3)\\ n_o(z^{\mathrm{I}},g_4,s_4)\\ n_o(z^{\mathrm{I}},g_4,s_5)\\ n_o(z^{\mathrm{I}},g_4,s_6)\,\\ n_o(z^{\mathrm{I}},g_4,s_7) \end{bmatrix}=&\begin{bmatrix} 0.26\\ 0.48\\ 0.55\\ 0.565\\ 0.59\\ 0.59\\ 0.59\\ \end{bmatrix}; \begin{bmatrix} n_1 (z^{\mathrm{I}},g_4,s_1)\\ n_1(z^{\mathrm{I}},g_4,s_2)\\ n_1(z^{\mathrm{I}},g_4,s_3)\\ n_1(z^{\mathrm{I}},g_4,s_4)\\ n_1(z^{\mathrm{I}},g_4,s_5)\\ n_1(z^{\mathrm{I}},g_4,s_6)\,\\ n_1(z^{\mathrm{I}},g_4,s_7) \end{bmatrix}\\ =&\begin{bmatrix} 0.95\cdot 10^{-5}\\ 1\cdot 10^{-5}\\ 1.5\cdot 10^{-5}\\ 1.3\cdot 10^{-5}\\ 1.3\cdot 10^{-5}\\ 1.3\cdot 10^{-5}\\ 1.3\cdot 10^{-5}\\ \end{bmatrix} \end{aligned}$$

For the Moon (\(g_1=\frac{1}{6}G\)):

$$\begin{aligned} \begin{bmatrix} n_o (z^{\mathrm{I}},g_1,s_1)\\ n_o(z^{\mathrm{I}},g_1,s_2)\\ n_o(z^{\mathrm{I}},g_1,s_3)\\ n_o(z^{\mathrm{I}},g_1,s_4)\\ n_o(z^{\mathrm{I}},g_1,s_5)\\ n_o(z^{\mathrm{I}},g_1,s_6)\,\\ n_o(z^{\mathrm{I}},g_1,s_7) \end{bmatrix}=&\begin{bmatrix} 0.61\\ 0.8\\ 0.85\\ 0.88\\ 0.9\\ 0.9\\ 0.9\\ \end{bmatrix}; \begin{bmatrix} n_1 (z^{\mathrm{I}},g_1,s_1)\\ n_1(z^{\mathrm{I}},g_1,s_2)\\ n_1(z^{\mathrm{I}},g_1,s_3)\\ n_1(z^{\mathrm{I}},g_1,s_4)\\ n_1(z^{\mathrm{I}},g_1,s_5)\\ n_1(z^{\mathrm{I}},g_1,s_6)\,\\ n_1(z^{\mathrm{I}},g_1,s_7) \end{bmatrix}\\ =&\begin{bmatrix} 0.155\cdot 10^{-4}\\ 1.1\cdot 10^{-3}\\ 1.5\cdot 10^{-3}\\ 1.5\cdot 10^{-3}\\ 1.5\cdot 10^{-3}\\ 1.5\cdot 10^{-3}\\ 1.5\cdot 10^{-3}\\ \end{bmatrix}. \end{aligned}$$

For Mars (\(g_{\mathrm{ex}}\approx \frac{3}{8}G\)):

$$\begin{aligned} \begin{bmatrix} n_o (z^{\mathrm{I}}, g_{\mathrm{ex}},s_1)\\ n_o(z^{\mathrm{I}}, g_{\mathrm{ex}},s_2)\\ n_o(z^{\mathrm{I}}, g_{\mathrm{ex}},s_3)\\ n_o(z^{\mathrm{I}}, g_{\mathrm{ex}},s_4)\\ n_o(z^{\mathrm{I}}, g_{\mathrm{ex}},s_5)\\ n_o(z^{\mathrm{I}}, g_{\mathrm{ex}},s_6)\,\\ n_o(z^{\mathrm{I}}, g_{\mathrm{ex}},s_7) \end{bmatrix}=&\begin{bmatrix} 0.46\\ 0.68\\ 0.75\\ 0.76\\ 0.77\\ 0.77\\ 0.77\\ \end{bmatrix}; \begin{bmatrix} n_1 (z^{\mathrm{I}},g_{\mathrm{ex}},s_1)\\ n_1(z^{\mathrm{I}},g_{\mathrm{ex}},s_2)\\ n_1(z^{\mathrm{I}},g_{\mathrm{ex}},s_3)\\ n_1(z^{\mathrm{I}},g_{\mathrm{ex}},s_4)\\ n_1(z^{\mathrm{I}},g_{\mathrm{ex}},s_5)\\ n_1(z^{\mathrm{I}},g_{\mathrm{ex}},s_6)\,\\ n_1(z^{\mathrm{I}},g_{\mathrm{ex}},s_7) \end{bmatrix}\\ =&\begin{bmatrix} 9.5\cdot 10^{-6}\\ 2.1\cdot 10^{-4}\\ 2.7\cdot 10^{-4}\\ 3.1\cdot 10^{-4}\\ 3.2\cdot 10^{-4}\\ 3.2\cdot 10^{-4}\\ 3.2\cdot 10^{-4}\\ \end{bmatrix}. \end{aligned}$$

Appendix B

The functions \(z^{\mathrm{II}} (m,g_{\mathrm{ex}})\) can be defined as parallel lines to \(z^{\mathrm{II}} (m_4,g_{\mathrm{ex}})\) (as shown in Fig. 1). The master equation would be

$$\begin{aligned} z^{\mathrm{II}}(m,g_{\mathrm{ex}})=f(g_{\mathrm{ex}})+ p(m,g_4) \pm \epsilon _{hf}^{\mathrm{II}}, \end{aligned}$$
(18a)

where \(p\,(m,g_4)\) would be the vertical displacement from \(f(g_{\mathrm{ex}})\) (assume \(z_{i,j}^{\mathrm{I}}=z_{i,j}^{\mathrm{II}}\) as before in the analysis of Sect. 3):

$$\begin{aligned} z^{\mathrm{II}}(m,g_{\mathrm{ex}}) = f(g_{\mathrm{ex}}) + p\,(m,g_{4}) \end{aligned}$$

with \(p\,(m,g_{4})\) defined as previously for q, but using intersecting points at a constant gravity \(g=g_4\) :

$$\begin{aligned} p\,(m,g_{4})={\left\{ \begin{array}{ll} h(m)-f(g_4)\quad \text {if } m\ne m_4 \\ 0\qquad \text {if } m=m_4. \end{array}\right. } \end{aligned}$$

The \(z^{\mathrm{II}}\) functions resulting from the previous equations are the following:

$$\begin{aligned} \begin{bmatrix} z^{\mathrm{II}}(m,g_{\mathrm{ex}},s_1)\\ z^{\mathrm{II}}(m,g_{\mathrm{ex}},s_2)\\ z^{\mathrm{II}}(m,g_{\mathrm{ex}},s_3)\\ z^{\mathrm{II}}(m,g_{\mathrm{ex}},s_4)\\ z^{\mathrm{II}}(m,g_{\mathrm{ex}},s_5)\\ z^{\mathrm{II}}(m,g_{\mathrm{ex}},s_6)\,\\ z^{\mathrm{II}}(m,g_{\mathrm{ex}},s_7) \end{bmatrix}= \begin{bmatrix} -0.94\\ -3.04\\ -3.13\\ -0.31\\ 2.95\\ -0.05\\ -0.7 \end{bmatrix}+ \begin{bmatrix} 0.231\\ 0.145\\ 0.018\\ -0.057\\ -0.362\\ 0.128\\ 0.244 \end{bmatrix}\,g_{\mathrm{ex}}+ \begin{bmatrix} 0.436\\ 1.343\\ 1.768\\ 1.834\\ 1.937\\ 1.91\\ 1.92 \end{bmatrix}\,m. \end{aligned}$$

Because \(z^{\mathrm{II}}\) functions physically represent the sinkage with variation of gravity at constant mass, they do not establish a useful scenario for analysis in the context of this paper. Thus, no fitting parameters for the aim of a more general formulation were found.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Arreguin, A.J.R., Montenegro, S. Improving Limitations of Rover Missions in the Moon and Planets by Unifying Vehicle–Terrain Interaction Models. Adv. Astronaut. Sci. Technol. 3, 17–28 (2020). https://doi.org/10.1007/s42423-020-00058-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42423-020-00058-x

Keywords

Navigation