Skip to main content

Review of Solar Magnetic Sailing Configurations for Space Travel

Abstract

A solar magnetic sailing spacecraft utilizes the interaction between solar wind and magnetic field that is generated by a loop of superconducting wire attached onboard of the spacecraft. The development of the working principle of solar magnetic sailing from MagSail to magnetospheric plasma propulsion and magneto-plasma-sail is reviewed and discussed to study their performance, focusing on its operation for interplanetary travel. The orbital dynamic of MagSail is elaborated to explore the probable trajectories of interest for space travel. Examples for MagSail interplanetary travel are discussed for insight and future continuing work.

This is a preview of subscription content, access via your institution.

Fig. 1

(adapted from [19])

Fig. 2
Fig. 3
Fig. 4
Fig. 5

(adapted from Funaki and Yamakawa [8, 11])

Fig. 6

(adapted from Slough [37])

Fig. 7
Fig. 8
Fig. 9

(adapted from Ashida et al. [35])

Fig. 10
Fig. 11

Abbreviations

B :

Magnetic field vector (T)

c :

Light speed (3 × 108 m/s)

C d :

Drag coefficient

δ :

Ion mean free path (m)

E :

Electric field vector (V/m)

e :

Elementary charge (1.6 × 10−19 C)

I coil :

Coil current (A)

I plasma :

Plasma current (A)

I sp :

Specific impulse (s)

J :

Current density (A/m2)

L :

Magnetospheric size (m)

m i :

Ion mass (kg)

m e :

Electron mass (kg)

M :

Magnetic moment (T m3)

μ 0 :

Magnetic permeability (1.26 × 10−6 H/m)

N :

Solar wind density (m−3)

r iL :

Ion Larmor radius at magnetopause (m)

r eL :

Electron Larmor radius at magnetopause (m)

R coil :

Coil radius (m)

R plasma :

Plasma current radius (m)

T :

Plasma temperature (K)

V :

Solar wind velocity (m/s)

v :

Particle velocity (m/s)

A :

Sail area

α :

Sail pitch angle

δ :

Sail clock angle

r :

Spacecraft’s radial distance to Sun

G :

Newton’s gravitational constant

M :

Mass of the Sun

μ :

Solar gravitational constant

m:

Spacecraft’s mass

\( \hat{r} \) :

Spacecraft radial component

\( \hat{\theta } \) :

Spacecraft transverse component

\( \hat{\phi } \) :

Spacecraft normal component

γ :

Spacecraft angle

v θ :

Transverse component of solar sail velocity

t − t 0 :

Transfer time

r 0 :

Initial distance from Sun

References

  1. 1.

    Andrews DG, Zubrin RM (1990) Magnetic sails and interstellar travel. J Br Interplanet Soc 43:265–272 (ISSN 0007-084X)

    Google Scholar 

  2. 2.

    Andrews DG, Zubrin RM (1990) Magnetic sailing and interstellar travel, Bangalore, India. J Br Interplanet Soc. In: 39th congress of international astronautical federation, vol 6

  3. 3.

    Zubrin RM, Andrews DG (1991) Magnetic sails and interplanetary travel. J Spacecr Rockets 28(2):197–203

    ADS  Article  Google Scholar 

  4. 4.

    Zubrin RM (1993) The use of magnetic sails to escape from low earth orbit. J Br Interplanet Soc 46(1):3–10

    ADS  Google Scholar 

  5. 5.

    Zubrin RM, Martin A (2000) The magnetic sail. Final report to the NASA Institute of Advanced Concepts (NIAC), January 7. http://www.niac.usra.edu_files_studies_final_report_320Zubrin. Accessed 15 Jan 2016

  6. 6.

    Winglee RM, Slough J, Ziemba T, Goodson A (2000) Mini-magnetospheric plasma propulsion: tapping the energy of the solar wind for spacecraft propulsion. J Geophys Res 105(21):21067–21078 (ISSN 0148-0227)

    ADS  Article  Google Scholar 

  7. 7.

    Winglee RM, Ziemba T, Slough J, Euripides P, Gallagher D (2001,) Laboratory testing of the mini-magnetospheric plasma propulsion (M2P2) prototype. In: El-Genk MS (ed) CP552, space technology and applications international forum-2001

  8. 8.

    Funaki I, Yamakawa H (2009) Research status of sail propulsion using the solar wind. J Plasma Fusion Res Ser 8:1580–1584

    Google Scholar 

  9. 9.

    Funaki I, Kojima H, Yamakawa H, Nakayama Y, Shimizu Y (2007) Laboratory experiment of plasma flow around magnetic sail. Astrophys Space Sci 307(1–3):63–68 (ISSN 0004-640X)

    ADS  Article  Google Scholar 

  10. 10.

    Funaki I, Kimura T, Ueno K, Ayabe T, Horisawa H, Yamakawa H, Kajimura Y, Nakashima H (2007) Laboratory experiment of magnetoplasma sail, part 2, IEPC-2007-94

  11. 11.

    Funaki I, Yamakawa H (2009) Solar wind sails. http://cdn.intechopen.com/pdfs/32547/InTech-Solar_wind_sails.pdf. Accessed 15 Jan 2014

  12. 12.

    Funaki IH, Kajimura Y, Ueno K, Oshio Y, Nishida H, Usui H, Matsumota M, Shinohara I (2010) Experimental and numerical investigations on the thrust. In: AIAA-2010-6773

  13. 13.

    Domonkos MT, Patterson MJ, Jankovsky RS (2002) Glenn Research Center, Cleveland, Ohio, Ion Engine and Hall Thruster Development at the NASA Glenn Research Center, NASA/TM—2002-211969

  14. 14.

    Vulpetti G (1994) A critical review on the viability of a space propulsion based on the solar wind momentum flux. Acta Astronaut 32(9):641–644

    ADS  Article  Google Scholar 

  15. 15.

    Yamakawa H (2003) A guidance strategy for the radially accelerated trajectory. In: AAS paper 03–521, AAS/AIAA in astrodynamics specialists conference, Big Sky, Montana, August 3–7

  16. 16.

    Ashida Y, Yamakawa H, Funaki I, Usui H, Kajimura Y, Kojima H (2014) Thrust evaluation of small-scale magnetic sail spacecraft by 3D particle-in-cell simulation, Kyoto U, 1.B35026. http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/182204/1/1.B35026.pdf. Accessed 15 Jan 2016

  17. 17.

    Richardson D, Schwadron NA The limits of our solar system. ftp://space.mit.edu/pub/plasma/publications/jdr_schwadron_book/jdr_schwadron_book.pdf. Accessed 7 June 2017

  18. 18.

    Zurbuchen TH, von Steiger R, Manchester WB, Fisk LA (2014) Heliospheric magnetic field configuration at solar maximum conditions: consequences for galactic cosmic rays, CP719, physics of the outer heliosphere: third international IGPP conference. American Institute of Physics

  19. 19.

    Anonymous (1997) The sun and heliosphere in three dimensions. https://umbra.nascom.nasa.gov/SEC/STEREO_sdt_report.pdf. Accessed 1 May 2018

  20. 20.

    Anonymous, Solar Wind: Global Properties ENCYCLOPEDIA OF ASTRONOMY AND ASTROPHYSICS, Copyright © Nature Publishing Group 2001 Brunel Road, Houndmills, Basingstoke, Hampshire, RG21 6XS, UK Registered No. 785998 and Institute of Physics Publishing 2001 Dirac House, Temple Back, Bristol, BS1 6BE, UK 1

  21. 21.

    Parker EN (1965) Dynamical theory of the solar wind. Space Sci Rev 4:666–708

    ADS  Article  Google Scholar 

  22. 22.

    Solar Probe (1989) Scientific rationale and mission concept. JPL D-6797 (1989)

  23. 23.

    Meyer-Vernet N (1999) How does the solar wind blow? A simple kinetic model. Eur J Phys 20:167–176

    Article  Google Scholar 

  24. 24.

    Matsumoto M, Usui H, Nunami M, Nakamura M, Shinohara I (2013) Two-dimentional AMR-PIC plasma simulation for mini-magnetosphere of magnetized object. Plasma Fusion Res 8:2406132

    ADS  Article  Google Scholar 

  25. 25.

    Maksimovic M, Zouganelis I, Chaufray J-Y et al (2005) Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J Geophys Res Atmos 110:A09104. https://doi.org/10.1029/2005JA011119

    ADS  Article  Google Scholar 

  26. 26.

    Cattell C, Catto P, Funsten H, Garnier D, Hershkowitz N, Myers R, Petschekand H, Winske R (2005) Physics and technology of the feasibility of plasma sails, PSFC/JA-05-26. J Geophys Res.

  27. 27.

    Gros C (2017) Universal scaling relation for magnetic sails: momentum braking in the limit of dilute interstellar media. arXiv:1707.02801v2 [physics.space-ph]. Accessed 8 Nov 2017. https://arxiv.org/pdf/1707.02801.pdf. Accessed 15 Apr 2018

  28. 28.

    Russel CT (2018) Solar wind and interplanetary magnetic field: a tutorial. https://agupubs.onlinelibrary.wiley.com/doi/pdf. https://doi.org/10.1029/gm125p0073. Accessed 15 Apr 2018

  29. 29.

    Khazanov G, Delamere P, Kabin K, Linde TL (2005) Fundamentals of the plasma sail concept: magnetohydrodynamic and kinetic studie. J Propul Power 21(5):853–864

    Article  Google Scholar 

  30. 30.

    Funaki I (2018) Overview of sail propulsion for space flight, 2015-lecture. http://www.al.t.u-tokyo.ac.jp/lecture/Chap8(SailingPropulsion).pdf. Accessed 15 Apr 2018

  31. 31.

    Ashida Y (2014) Study on propulsive characteristics of magnetic sail and magneto plasma sail by plasma particle simulations. Doctoral thesis, Kyoto University

  32. 32.

    Funaki I, Kajimura Y, Nishida H, Arita H, Ashida Y, Yamanaka H, Oshio Y, Ueno K, Yamamura H, Yamagiwa Y (2013) Magnetoplasma Sail with equatorial ring-current. In: AIAA 2013-3878, 49th AIAAASME/SAE/ASEE joint propulsion conference and exhibit, San Jose, July 2013

  33. 33.

    Nagasaki Y, Funaki I, Nakamura T, Yamakawa H (2015) Increase in thrust of magneto plasma sail using solid or deployable superconducting coil. In: 34th international electric propulsion conference, IEPC-2015-328, Kobe, July 6–10, 2015

  34. 34.

    Yamakawa H, Funaki I, Nakayama Y, Fujita K, Ogawa H, Nonaka S, Kuninaka H, Sawai S, Nishida H, Asahi R, Otsu H, Nakashima H (2006) Magneto-plasma sail. An engineering satellite concept and its application for outer planet missions. Acta Astronaut 59(8–11):777–784

    ADS  Article  Google Scholar 

  35. 35.

    Ashida Y, Funaki I, Yamakawa K (2011) Two-dimensional particle-in-cell simulation of magnetic sails. In: IEPC-2011-180, Presented at the 32nd international electric propulsion conference, Wiesbaden, Germany, 11–15 September 2011

  36. 36.

    Nishida H, Funaki I, Ogawa H, Inatani Y MHD analysis on propulsive characteristics of magneto plasma sail IEPC-2007-195. http://erps.spacegrant.org/uploads/images/images/iepc_articledownload_1988-2007/2007index/IEPC-2007-195.pdf. Accessed 24 Jan 2017

  37. 37.

    Slough J (2003) The plasma magnet. NASA Institute of Advanced Concepts, Mountain View

    Google Scholar 

  38. 38.

    Scott DE (2013,) A note on the acceleration of the solar wind. https://electric-cosmos.org/SolarWind.pdf. Accessed 15 Jan 2017

  39. 39.

    Kasper JC (2002) Solar wind plasma—kinetic properties and micro-instabilities. Ph.D., MIT

  40. 40.

    Schield MA (1969) Pressure balance between solar wind and magnetosphere. J Geophys Res Space Phys 74:1275–1286

    ADS  Article  Google Scholar 

  41. 41.

    Kare JT (2002) High-acceleration micro-scale laser sails for interstellar propulsion. NASA NIAC Research Center. www.niac.usra.edu/files/studies/final_report/597Kare.pdf. Accessed 15 Jan 2017

  42. 42.

    Fujita K (2004) Particle simulation of moderately-sized magnetic sails. J Space Technol Sci 20(2):26–31 (ISSN 0911-551X)

    Google Scholar 

  43. 43.

    Djojodihardjo H, Aziz N (2015) An exploratory study of magnetic sailing. In: 6th CSA-IAA conference on advanced space technology, 10–12 Nov 2015, Shanghai, China

  44. 44.

    Djojodihardjo H, Aziz N (2016) Solar magnetic sailing configuration and inter-planetary travel—an exploratory study. In: Paper IAC-16.C4.8.9. Presented at the, 67th international astronautical congress

  45. 45.

    McInnes C (1999) Solar sailing: technology, dynamics, and mission applications. Springer-Praxis, Chichester

    Book  Google Scholar 

  46. 46.

    McInnes CR (2003) Orbits in a generalized two-body problem. J Guidance Control Dyn 26(5):743–749 (ISSN 0731-5090)

    ADS  Article  Google Scholar 

  47. 47.

    Alfriend KT, Vadali SR, Gurfil P, How JP, Breger LS (2010) Spacecraft formation flying. Butterworth-Heinemann, Burlington

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harijono Djojodihardjo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Djojodihardjo, H. Review of Solar Magnetic Sailing Configurations for Space Travel. Adv. Astronaut. Sci. Technol. 1, 207–219 (2018). https://doi.org/10.1007/s42423-018-0022-4

Download citation

Keywords

  • MagSail
  • Orbital analysis
  • Solar magnetic sailing
  • Space dynamics
  • Space travel