Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M (2016) Tensorflow: a system for large-scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp 265–283
Barnich O, Van Droogenbroeck M (2010) Vibe: A universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724
Bautista CM, Dy CA, Mañalac MI, Orbe RA, Cordel M (2016) Convolutional neural network for vehicle detection in low resolution traffic videos. In: Region 10 Symposium (TENSYMP), 2016 IEEE. IEEE, pp 277–281
Bewley A, Ge Z, Ott L, Ramos F, Upcroft B (2016) Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE, pp 3464–3468
Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z (2015) Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv:1512.01274
Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR′05), vol 1. IEEE, pp 886–893
Devi RB, Chanu YJ, Singh KM (2016) A survey on different background subtraction method for moving object detection. Int J Res Emerg Sci Technol 3(10)
Fan Q, Brown L, Smith J (2016) A closer look at faster R-CNN for vehicle detection. In: 2016 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp 124–129
Feng X, Jiang Y, Yang X, Du M, Li X (2019) Computer vision algorithms and hardware implementations: a survey. Integration 69:309–320
Google-Developers (2020). https://developer.android.com/ndk/guides/neuralnetworks
Hardjono B, Tjahyadi H, Rhizma MG, Widjaja AE, Kondorura R, Halim AM (2018) Vehicle counting quantitative comparison using background subtraction, viola jones and deep learning methods. In: 2018 IEEE 9th Annual information technology, electronics and mobile communication conference (IEMCON). IEEE, pp 556–562
Henriques JF, Caseiro R, Martins P, Batista J (2014) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861
Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V, Le QV (2019) Searching for mobilenetv3. In: Proceedings of the IEEE international conference on computer vision, pp 1314–1324
Jeeva S, Sivabalakrishnan M (2015) Survey on background modeling and foreground detection for real time video surveillance. Proc Comput Sci 50:566–571
Article
Google Scholar
Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia, pp 675–678
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proc Syst 25:1097–105
Lee J, Chirkov N, Ignasheva E, Pisarchyk Y, Shieh M, Riccardi F, Sarokin R, Kulik A, Grundmann M (2019) On-device neural net inference with mobile gpus. arXiv:1907.01989
Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26
Article
Google Scholar
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: Single shot multibox detector. In: European conference on computer vision. Springer, Cham, pp 21–37
Onoro-Rubio D, López-Sastre RJ (2016) Towards perspective-free object counting with deep learning. European conference on computer vision. Springer, New York, pp 615–629
Google Scholar
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A (2019) Pytorch: an imperative style, high-performance deep learning library. arXiv:1912.01703
Piccardi M (2004) Background subtraction techniques: a review. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), vol 4. IEEE, pp 3099–3104
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788
Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv:1804.02767
Ren S, He K, Girshick R, Sun J (2016) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vision 115(3):211–252
MathSciNet
Article
Google Scholar
Shi J (1994) Good features to track. In: 1994 Proceedings of IEEE conference on computer vision and pattern recognition. IEEE, pp 593–600
Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: Proceedings. 1999 IEEE computer society conference on computer vision and pattern recognition (Cat. No PR00149), vol 2. IEEE, pp 246–252
Sturgess P, Alahari K, Ladicky L, Torr PH (2009) Combining appearance and structure from motion features for road scene understanding. In: BMVC 2012-23rd british machine vision conference, BMVA
Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001, vol 1. IEEE
Wojke N, Bewley A, Paulus D (2017) Simple online and realtime tracking with a deep association metric. In: 2017 IEEE international conference on image processing (ICIP). IEEE, pp 3645–3649
Xiang X, Zhai M, Lv N, El Saddik A (2018) Vehicle counting based on vehicle detection and tracking from aerial videos. Sensors 18(8):2560
Article
Google Scholar
Yeshwanth C, Sooraj PA Sudhakaran V, Raveendran V (2017) Estimation of intersection traffic density on decentralized architectures with deep networks. In: 2017 International smart cities conference (ISC2). IEEE, pp 1–6
Zhang X, Wang Y, Shi W (2018) pcamp: Performance comparison of machine learning packages on the edges. In: USENIX workshop on hot topics in edge computing (HotEdge 18)