Alzantot M, Chakraborty S, Srivastava M (2017) Sensegen: a deep learning architecture for synthetic sensor data generation. IEEE Int Conf Pervasive Comput Commun Workshops (PerCom Workshops) 2017:188–193
Article
Google Scholar
An J, Cho S (2015) Variational autoencoder based anomaly detection using reconstruction probability. Spec Lect IE 2(1):1–18
Google Scholar
Bhattacharya S, Lane ND (2016) From smart to deep: Robust activity recognition on smartwatches using deep learning. IEEE Int Conf Pervasive Comput Commun Workshops (PerCom Workshops) 2016:1–6
Google Scholar
Bulling A, Blanke U, Schiele B (2014) A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput Surv 46(3):1–33. https://doi.org/10.1145/2499621
Article
Google Scholar
Chavarriaga R, Sagha H, Calatroni A, Digumarti ST, Tröster G, Millán JDR, Roggen D (2013) The opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recogn Lett 34(15):2033–2042. https://doi.org/10.1016/j.patrec.2012.12.014
Article
Google Scholar
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357
Article
Google Scholar
Chen C, Jafari R, Kehtarnavaz N (2015) UTD-MHAD: a multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor. IEEE Int Conf Image Process (ICIP) 2015:168–172
Google Scholar
Cichy RM, Khosla A, Pantazis D, Torralba A, Oliva A (2016) Deep neural networks predict hierarchical spatio-temporal cortical dynamics of human visual object recognition. ArXiv Preprint arXiv: 1601.02970
DeVries T, Taylor GW (2017) Dataset augmentation in feature space. ArXiv Preprint arXiv: 1702.05538
Foerster F, Smeja M, Fahrenberg J (1999) Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput Hum Behav 15(5):571–583
Article
Google Scholar
Forestier G, Petitjean F, Dau HA, Webb GI, Keogh E (2017) Generating synthetic time series to augment sparse datasets. IEEE Int Conf Data Min (ICDM) 2017:865–870
Google Scholar
Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H (2018) GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321:321–331
Article
Google Scholar
Gjoreski H, Ciliberto M, Wang L, Morales FJO, Mekki S, Valentin S, Roggen D (2018) The university of Sussex-Huawei locomotion and transportation dataset for multimodal analytics with mobile devices. IEEE Access 6:42592–42604
Article
Google Scholar
Gu F, Khoshelham K, Valaee S (2017) Locomotion activity recognition: a deep learning approach. In: 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), pp 1–5
Gu F, Khoshelham K, Valaee S, Shang J, Zhang R (2018) Locomotion activity recognition using stacked denoising autoencoders. IEEE Int Things J 5(3):2085–2093. https://doi.org/10.1111/acer.13391
Article
Google Scholar
Hassan MM, Uddin MZ, Mohamed A, Almogren A (2018) A robust human activity recognition system using smartphone sensors and deep learning. Future Gen Comput Syst 81:307–313. https://doi.org/10.1016/j.future.2017.11.029
Article
Google Scholar
Islam Z, Abdel-Aty M, Cai Q, Yuan J (2020) Crash data augmentation using variational autoencoder. Accid Anal Prev 151:105950
Article
Google Scholar
Javier Ordóñez F, de Toledo P, Sanchis A (2013) Activity recognition using hybrid generative/discriminative models on home environments using binary sensors. Sensors (Switzerland) 13(5):5460–5477. https://doi.org/10.3390/s130505460
Article
Google Scholar
Kakihara M (2014) Grasping a global view of smartphone diffusion: an analysis from a global smartphone study. ICMB 11
Kingma DP, Welling M (2014) Auto-encoding variational bayes. In: 2nd international conference on learning representations, ICLR 2014—conference track proceedings, Ml, pp 1–14
Kusner MJ, Paige B, Hernández-Lobato JM (2017) Grammar variational autoencoder. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 1945–1954
Lara OD, Labrador MA (2012) A survey on human activity recognition using wearable sensors. IEEE Commun Surv Tutor 15(3):1192–1209
Article
Google Scholar
Lau SL, König I, David K, Parandian B, Carius-Düssel C, Schultz M (2010) Supporting patient monitoring using activity recognition with a smartphone. In: 2010 7th international symposium on wireless communication systems, pp 810–814
Le Guennec A, Malinowski S, Tavenard R, Cui Z, Chen W, Chen Y (2016) Data augmentation for time series classification using convolutional neural networks. ArXiv Preprint arXiv: 1603.06995
Lin F, Song C, Xu X, Cavuoto L, Xu W (2016) Sensing from the bottom: Smart insole enabled patient handling activity recognition through manifold learning. In: 2016 IEEE first international conference on connected health: applications, systems and engineering technologies (CHASE), pp 254–263
Madabhushi A, Aggarwal JK (1999) A bayesian approach to human activity recognition. In: Proceedings second IEEE workshop on visual surveillance (VS’99) (Cat. No. 98-89223), pp 25–32
Nweke HF, Teh YW, Al-Garadi MA, Alo UR (2018) Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert Syst Appl 105:233–261
Article
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830
MathSciNet
MATH
Google Scholar
Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. ArXiv Preprint arXiv:1712.04621
Pu Y, Gan Z, Henao R, Yuan X, Li C, Stevens A, Carin L (2016) Variational autoencoder for deep learning of images, labels and captions. arXiv preprint. arXiv:1609.08976
Sønderby CK, Raiko T, Maaløe L, Sønderby SK, Winther O (2016) Ladder variational autoencoders. arXiv preprint. arXiv:1602.02282
Song B, Kamal AT, Soto C, Ding C, Farrell JA, Roy-Chowdhury AK (2010) Tracking and activity recognition through consensus in distributed camera networks. IEEE Trans Image Process 19(10):2564–2579
MathSciNet
Article
Google Scholar
Steven Eyobu O, Han DS (2018) Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network. Sensors 18(9):2892
Article
Google Scholar
Um TT, Pfister FMJ, Pichler D, Endo S, Lang M, Hirche S, Fietzek U, Kulić D (2017) Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks. In: Proceedings of the 19th ACM international conference on multimodal interaction, pp 216–220
Vavoulas G, Chatzaki C, Malliotakis T, Pediaditis M, Tsiknakis M (2016) The MobiAct Dataset: recognition of activities of daily living using smartphones. ICT4AgeingWell 143–151
Wang J, Chen Y, Gu Y, Xiao Y, Pan H (2018) SensoryGANs: an effective generative adversarial framework for sensor-based human activity recognition. In: Proceedings of the international joint conference on neural networks, 2018-July, pp 1–8. https://doi.org/10.1109/IJCNN.2018.8489106
Wang J, Chen Y, Hao S, Peng X, Hu L (2019a) Deep learning for sensor-based activity recognition: a survey. Pattern Recogn Lett 119:3–11
Article
Google Scholar
Wang L, Gjoreski H, Ciliberto M, Mekki S, Valentin S, Roggen D (2019b) Enabling reproducible research in sensor-based transportation mode recognition with the Sussex-Huawei dataset. IEEE Access 7:10870–10891
Article
Google Scholar
Wong SC, Gatt A, Stamatescu V, McDonnell MD (2016) Understanding data augmentation for classification: when to warp? Int Conf Digit Image Comput Tech Appl (DICTA) 2016:1–6
Google Scholar
Xu W, Sun H, Deng C, Tan Y (2017) Variational autoencoder for semi-supervised text classification. In: Thirty-first AAAI conference on artificial intelligence
Yin J, Yang Q, Member S, Pan JJ (n.d.) Sensor-based abnormal human-activity detection. IEEE Transactions on Knowledge and Data Engineering, 20(8):1082–1090
Zhang M, Sawchuk AA (2011) A feature selection-based framework for human activity recognition using wearable multimodal sensors. BodyNets 92–98