Skip to main content
Log in

Lab-Scale Vibration Analysis Dataset and Baseline Methods for Machinery Fault Diagnosis with Machine Learning

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Motivation

The monitoring of machine conditions in a plant is crucial for production in manufacturing. A sudden failure of a machine can stop production and cause a loss of revenue. The vibration signal of a machine is a good indicator of its condition.

Purpose

This paper presents a dataset of vibration signals from a lab-scale machine. The dataset contains four different types of machine conditions: normal, unbalance, misalignment, and bearing fault. Three machine learning methods (SVM, KNN, and GNB) evaluated the dataset, and a perfect result was obtained by one of the methods on a onefold test.

Results

The performance of the algorithms is evaluated using weighted accuracy (WA), since the data are balanced. The results show that the best-performing algorithm is the SVM with a WA of 99.75% on the fivefold cross-validations. The dataset is provided in the form of CSV files in an open and free repository at https://zenodo.org/record/7006575.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Girdhar P (2004) Practical machinery vibration analysis and predictive maintenance. Elsevier, Oxford

    Google Scholar 

  2. Bagavathiappan S, Lahiri BB, Saravanan T, Philip J, Jayakumar T (2013) Infrared thermography for condition monitoring—a review. Infrared Phys Technol 60(April):35–55. https://doi.org/10.1016/j.infrared.2013.03.006

    Article  ADS  Google Scholar 

  3. Delgado-Arredondo PA, Morinigo-Sotelo D, Osornio-Rios RA, Avina-Cervantes JG, Rostro-Gonzalez H, Romero-Troncoso RdJ (2017) Methodology for fault detection in induction motors via sound and vibration signals. Mech Syst Signal Process 83:568–589. https://doi.org/10.1016/j.ymssp.2016.06.032

    Article  ADS  Google Scholar 

  4. Glowacz A (2018) Acoustic based fault diagnosis of three-phase induction motor. Appl Acoust 137:82–89. https://doi.org/10.1016/j.apacoust.2018.03.010

    Article  Google Scholar 

  5. Atmaja BT, Arifianto D (2009) Machinery fault diagnosis using independent component analysis and instantaneous frequency. In: Proceeding international conference on instrumentation, communication information technology and biomedical engineering. ITB, Bandung. https://doi.org/10.1109/ICICI-BME.2009.5417257. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5417257

  6. Moya MDCC (2007) Model for the selection of predictive maintenance techniques. INFOR Inf Syst Oper Res 45(2):83–94. https://doi.org/10.3138/infor.45.2.83

    Article  Google Scholar 

  7. Shozo Tanaka (2015) Life cycle maintenance. JR EAST Tech Rev 22(54):29–44

  8. Ypma A (2001) Learning methods for machine vibration analysis and health monitoring. Ph.D. thesis, TU Delft

  9. Yang Q (2019) Highly accurate machine fault diagnosis using deep transfer learning. IEEE Trans Ind Inform 15(4):2446–2455

    Article  Google Scholar 

  10. Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX (2019) Deep learning and its applications to machine health monitoring. Mech Syst Signal Process 115:213–237. https://doi.org/10.1016/j.ymssp.2018.05.050

    Article  ADS  Google Scholar 

  11. Neupane D, Kim Y, Seok J (2021) Bearing fault detection using scalogram and switchable normalization-based CNN (SN-CNN). IEEE Access 9:88151–88166. https://doi.org/10.1109/ACCESS.2021.3089698

    Article  Google Scholar 

  12. Sokolovsky A, Hare D, Mehnen J (2021) Cost-effective vibration analysis through data-backed pipeline optimisation. Sensors 21(19):1–12. https://doi.org/10.3390/s21196678. arXiv:2108.07017

  13. Nath AG, Sharma A, Udmale SS, Singh SK (2021) An early classification approach for improving structural rotor fault diagnosis. IEEE Trans Instrum Meas. https://doi.org/10.1109/TIM.2020.3043959

    Article  Google Scholar 

  14. Marins MA, Ribeiro FML, Netto SL, da Silva EAB (2018) Improved similarity-based modeling for the classification of rotating-machine failures. J Frankl Inst 355(4):1913–1930. https://doi.org/10.1016/j.jfranklin.2017.07.038

    Article  Google Scholar 

  15. Ribeiro F, Marins M, Netto S, Silva E (2017) Rotating machinery fault diagnosis using similarity-based models. In: XXXV Simpósio Bras. Telecomunicações e Process. Sinais-SBrT2017, pp 277–281. https://doi.org/10.14209/sbrt.2017.133

  16. Ribeiro FML (2022) MaFaulDa—Machinery Fault Database [Online]. https://www02.smt.ufrj.br/texttildelowoffshore/mfs/page_01.html. Accessed 2 Nov 2022

  17. Case Western Reserve University (CWRU) Bearing Fault Dataset. https://engineering.case.edu/bearingdatacenter. Accessed 16 Dec 2022

  18. Toh G, Park J (2020) Review of vibration-based structural health monitoring using deep learning. Appl Sci. https://doi.org/10.3390/app10051680

    Article  Google Scholar 

  19. Scalabrini Sampaio G, Vallim Filho ARdA, Santos da Silva L, Augusto da Silva L (2019) Prediction of motor failure time using an artificial neural network. Sensors 19(19):4342. https://doi.org/10.3390/s19194342

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Taufan I (2018) Transfer path analysis Sebagai Fitur Untuk Deteksi Kerusakan Pada Sistem Pompa Sentrifugal-Beam. Technical report, Institut Teknologi Sepuluh Nopember

  21. Ihsannur H (2022) Deteksi Kerusakan Pompa Berdasarkan Sinyal Vibrasi Menggunakan Machine Learning. Technical report, Institut Teknologi Sepuluh Nopember

  22. Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T (2016) A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv Eng Softw 100:19–31. https://doi.org/10.1016/j.advengsoft.2016.06.005

    Article  Google Scholar 

  23. Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790 https://doi.org/10.1016/j.cma.2019.112790. arXiv:1908.10407

  24. Ebrahimi E, Javidan M (2017) Vibration-based classification of centrifugal pumps using support vector machine and discrete wavelet transform. J Vibroeng 19(4):2586–2597. https://doi.org/10.21595/jve.2017.18120

    Article  Google Scholar 

  25. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  Google Scholar 

  26. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020) Array programming with NumPy. Nature 585:357–362. https://doi.org/10.1038/s41586-020-2649-2. arXiv:2006.10256

Download references

Acknowledgements

The authors would like to thank enDAQ for providing calibrated vibration sensor, LOG-0002-100G-DC-8GB-PC Shock and Vibration Sensor, and data acquisition system (enDAQ LAB) used in this research. Parts of this research were supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan, under Project No. JPNP20006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bagus Tris Atmaja.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atmaja, B.T., Ihsannur, H., Suyanto et al. Lab-Scale Vibration Analysis Dataset and Baseline Methods for Machinery Fault Diagnosis with Machine Learning. J. Vib. Eng. Technol. 12, 1991–2001 (2024). https://doi.org/10.1007/s42417-023-00959-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-023-00959-9

Keywords

Navigation