Skip to main content
Log in

Reliability-Based Optimization of Flexible Manipulators

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

This paper addresses the optimal design of flexible link manipulators to optimize the dynamic performance subject to the effect of the uncertainties quantified by a reliability index.

Methods

The links’ uncertain stiffness and inertial parameters are modeled using the stochastic finite-element method. A methodology is proposed to determine the design variables that maximize the performance and simultaneously maximize reliability that aims to optimize the flexible manipulators based on reliability-based optimization. This reliability-based optimization derives a multi-objective optimization problem that is solved using evolutionary algorithms.

Results

Numerical results illustrate the dynamic modeling of the one-link flexible manipulator using the stochastic finite element method in terms of displacement of the manipulator’s tip and the frequency response function subjected to uncertainties. Moreover, the optimal design was carried out to maximize the reliability and optimize the elastodynamic performance; thus, the reliability of the manipulator is maximized, and several performance criteria such as the actuator power, manipulator mass, and the first mode natural frequency are optimized simultaneously.

Conclusions

The proposed methodology permitted optimizing critical operational characteristics of flexible manipulators, such as minimizing the elastic deflections, minimizing the power of actuators, and minimizing the mass of the manipulator subject to reliability constraints. Thus, the main contributions are (i) the stochastic modeling of flexible-link manipulators, (ii) the reliability optimization approach applied to the flexible-link manipulator, and (iii) a case study considering a one-link flexible manipulator with uncertain structural parameters to determine the optimal inertial parameters and geometric parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Omisore OM, Han S, Xiong J, Li H, Li Z, Wang L (2020) A review on flexible robotic systems for minimally invasive surgery. IEEE Trans Syst Man Cybern Syst

  2. She Y, Song S, Su H-J, Wang J (2021) A parametric study of compliant link design for safe physical human–robot interaction. Robotica 39(10):1739–1759

    Article  Google Scholar 

  3. Thomsen DK, Søe-Knudsen R, Balling O, Zhang X (2021) Vibration control of industrial robot arms by multi-mode time-varying input shaping. Mech Mach Theory 155:104072

    Article  Google Scholar 

  4. Sayahkarajy M, Mohamed Z, Mohd Faudzi AA (2016) Review of modelling and control of flexible-link manipulators. Proc Inst Mech Eng I J Syst Control Eng 230(8):861–873

    Google Scholar 

  5. Benosman M, Le Vey G (2004) Control of flexible manipulators: a survey. Robotica 22(5):533–545

    Article  Google Scholar 

  6. Dixit US, Kumar R, Dwivedy SK (2005) Shape optimization of flexible robotic manipulators. J Mech Des 128(3):559–565. https://doi.org/10.1115/1.2181606

    Article  Google Scholar 

  7. Lara-Molina FA, Dumur D, Takano KA (2018) Multi-objective optimal design of flexible-joint parallel robot. Eng Comput

  8. Beyer H-G, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196(33–34):3190–3218

    Article  MathSciNet  MATH  Google Scholar 

  9. Sun T, Lian B, Song Y, Feng L (2019) Elastodynamic optimization of a 5-dof parallel kinematic machine considering parameter uncertainty. IEEE/ASME Trans Mechatron 24(1):315–325

    Article  Google Scholar 

  10. Lara-Molina FA, Dumur D (2021) Robust multi-objective optimization of parallel manipulators. Meccanica 56(11):2843–2860

    Article  MathSciNet  MATH  Google Scholar 

  11. Valdebenito MA, Schuëller GI (2010) A survey on approaches for reliability-based optimization. Struct Multidiscip Optim 42(5):645–663

    Article  MathSciNet  MATH  Google Scholar 

  12. Bowling AP, Renaud JE, Newkirk JT, Patel NM, Agarwal H (2006) Reliability-based design optimization of robotic system dynamic performance. J Mech Des 129(4):449–454. https://doi.org/10.1115/1.2437804

    Article  Google Scholar 

  13. Fei C, Liu H, Patricia Liem R, Choy Y, Han L (2022) Hierarchical model updating strategy of complex assembled structures with uncorrelated dynamic modes. Chin J Aeronaut 35(3):281–296. https://doi.org/10.1016/j.cja.2021.03.023

    Article  Google Scholar 

  14. Fei C-W, Li H, Lu C, Han L, Keshtegar B, Taylan O (2022) Vectorial surrogate modeling method for multi-objective reliability design. Appl Math Model 109:1–20. https://doi.org/10.1016/j.apm.2022.03.033

    Article  MathSciNet  MATH  Google Scholar 

  15. Fei C-W, Li H, Liu H-T, Lu C, Keshtegar B, An L-Q (2020) Multilevel nested reliability-based design optimization with hybrid intelligent regression for operating assembly relationship. Aerosp Sci Technol 103:105906. https://doi.org/10.1016/j.ast.2020.105906

    Article  Google Scholar 

  16. Li H, Bu S, Wen J-R, Fei C-W (2022) Synthetical modal parameters identification method of damped oscillation signals in power system. Appl Sci 12(9)

  17. Fei C-W, Li H, Liu H-T, Lu C, An L-Q, Han L, Zhao Y-J (2020) Enhanced network learning model with intelligent operator for the motion reliability evaluation of flexible mechanism. Aerosp Sci Technol 107:106342. https://doi.org/10.1016/j.ast.2020.106342

    Article  Google Scholar 

  18. Lara-Molina FA, Dumur D (2021) A fuzzy approach for the kinematic reliability assessment of robotic manipulators. Robotica 39(12):2095–2109

    Article  Google Scholar 

  19. Zhang C-Y, Song L-K, Fei C-W, Hao G-P, Liu L-J (2016) Reliability-based design optimization for flexible mechanism with particle swarm optimization and advanced extremum response surface method. J Central South Univ 23(8):2001–2007

    Article  Google Scholar 

  20. Zhao Y, Lu C, Fei C, An L, Hu Y, Huang B, Yuan L (2020) Transient reliability evaluation approach of flexible mechanism with ga-extremum neural network. Math Problems Eng 2020

  21. Bai B, Zhou C, Ye N, Liu X, Li W (2022) Reliability optimization of two-link flexible manipulator. Appl Math Model 101:76–95

    Article  MathSciNet  MATH  Google Scholar 

  22. Ling M, Cao J, Li Q, Zhuang J (2018) Design, pseudostatic model, and pvdf-based motion sensing of a piezo-actuated xyz flexure manipulator. IEEE/ASME Trans Mechatron 23(6):2837–2848

    Article  Google Scholar 

  23. Liao B, Gao X, Lou Y (2021) An integrated structure and control design of a coaxis planar parallel manipulator for pick-and-place applications based on elastic potential energy. Int J Adv Rob Syst 18(5):17298814211049124

    Article  Google Scholar 

  24. Lismonde A, Sonneville V, Brüls O (2019) A geometric optimization method for the trajectory planning of flexible manipulators. Multibody Syst Dyn 47(4):347–362

    Article  MathSciNet  MATH  Google Scholar 

  25. Korayem MH, Nikoobin A, Azimirad V (2009) Trajectory optimization of flexible link manipulators in point-to-point motion. Robotica 27(6):825–840

    Article  Google Scholar 

  26. Deb K, Gupta S, Daum D, Branke J, Mall AK, Padmanabhan D (2009) Reliability-based optimization using evolutionary algorithms. IEEE Trans Evol Comput 13(5):1054–1074

    Article  Google Scholar 

  27. Usoro PB, Nadira R, Mahil SS (1986) A finite element/lagrange approach to modeling lightweight flexible manipulators. J Dyn Syst Meas Contr 108(3):198–205

    Article  MATH  Google Scholar 

  28. Inman DJ, Singh RC (1994) Engineering vibration, vol 3. Prentice Hall Englewood Cliffs, NJ, Upper Saddle River, New Jersey

    Google Scholar 

  29. Meirovitch L (1980) Computational methods in structural dynamics, vol 5. Springer, Berlin

    MATH  Google Scholar 

  30. Lewis FL, Dawson DM, Abdallah CT (2003) Robot manipulator control: theory and practice. CRC Press, New York, NY

    Book  Google Scholar 

  31. Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Courier Corporation, Mineola, NY

    MATH  Google Scholar 

  32. Florian A (1992) An efficient sampling scheme: updated latin hypercube sampling. Probab Eng Mech 7(2):123–130

    Article  Google Scholar 

  33. Moses F, Kinser DE (1967) Optimum structural design with failure probability constraints. AIAA J 5(6):1152–1158

    Article  Google Scholar 

  34. Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23(3):470–472

    Article  MathSciNet  MATH  Google Scholar 

  35. Rackwitz R (1976) Practical probabilistic approach to design. Bulletin, 112. Comite European du Beton

  36. Holland JH (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2(2):88–105

    Article  MathSciNet  MATH  Google Scholar 

  37. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  38. Yusoff Y, Ngadiman MS, Zain AM (2011) Overview of nsga-ii for optimizing machining process parameters. Proc Eng 15:3978–3983

    Article  Google Scholar 

  39. Chen Z, Wu Z, Li X, Chen G, Chen G, Gao L, Qiu H (2019) An accuracy analysis method for first-order reliability method. Proc Inst Mech Eng C J Mech Eng Sci 233(12):4319–4327

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support provided by CNPq (Process 427204/2018-6), and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Andres Lara-Molina.

Ethics declarations

Conflict of interest

This study was funded by CNPq (427204/2018-6) and, CAPES. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Parameters of Flexible-Link Manipulator

Appendix A Parameters of Flexible-Link Manipulator

See Tables 5, 6.

Table 5 Physical and geometric parameters of flexible-link manipulator
Table 6 Definition bounds of optimization constraits

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara-Molina, F.A., Gonçalves, R.S. Reliability-Based Optimization of Flexible Manipulators. J. Vib. Eng. Technol. 11, 3147–3162 (2023). https://doi.org/10.1007/s42417-022-00737-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00737-z

Keywords

Navigation