Skip to main content
Log in

Structural Vibration Control in Excited Structures: History and Prospects

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

Structural vibration is principally caused by ground motion excitation. Its control strategy has attracted and still attracts considerable attention. Over the past few years, structural safety was the main objective in the development of construction technics.

Methods

Recently, most researches focused on the development of these strategies to propose an adequate choice that ensures the safety of structures subjected to the dynamic excitation. The oldest control strategy in the literature is the passive one, in which the reduction of structural vibration caused by ground motion excitation is assured without the need for a source of energy.

Results

In this paper, an overview, assessment, and state of the art of control strategies especially the passive ones, is presented covering their theoretical backgrounds. The chronological development of these strategies is also provided and analyzed.

Conclusion

Finally, the last researches, technics and applications in this area are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Cassius D (1867) Roman history. Firmin Didot Brothers, Paris

    Google Scholar 

  2. Sbeinati MR, Darawcheh R, Mouty M (2005) The historical earthquakes of Syria: an analysis of large and moderate earthquakes from 1365 BC to 1900 AD. Ann Geophys 48:347–435

    Google Scholar 

  3. Poirier JP (2017) The great Huaxian earthquake (1556): some Chinese sources. Comptes Rendus Geosci 349:49–52

    Google Scholar 

  4. Satake K, Atwater BF (2007) Long-term perspectives on Giant earthquakes and tsunamis at subduction zones. Annu Rev Earth Planet Sci 35:349–374

    Google Scholar 

  5. Suzuki W, Aoi S, Sekiguchi H, Kunugi T (2012) Source rupture process of the 2011 tohoku-oki earthquake derived from the strong-motion records. In: Proceedings of 15th world conference earthquake engineering, Lisbon, Portugal

  6. Yang Z, Liu A, Lai SK, Safaei B, Lv J, Huang Y, Fu J (2022) Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches. Engineering Structures 250:108103

    Google Scholar 

  7. Yang Z, Wi D, Yang J, Lai SK, Lv J, Liu A, Fu J (2021) Dynamic buckling of rotationally restrained FG porous arches reinforced with graphene nanoplatelets under a uniform step load. Thin Walled Struct 166:113243

    Google Scholar 

  8. Yang Z, Tam M, Zhang Y, Kitipornchai S, Lv J, Yang J (2020) Nonlinear dynamic response of FG graphene platelets reinforced composite beam with edge cracks in thermal environment. Int J Struct Stabil Dyn 20:2043005

    MathSciNet  Google Scholar 

  9. Yang Z, Liu A, Pi YL, Fu J, Gao Z (2020) Nonlinear dynamic buckling of fixed shallow arches under impact loading: an analytical and experimental study. J Sound Vib 487:115262

    Google Scholar 

  10. Yang Z, Zhao S, Yang J, Lv J, Liu A, Fu J (2021) Nonlinear dynamic buckling of fixed shallow arches under impact loading: an analytical and experimental study. Mech Adv Mater Struct 28:2046–2056

    Google Scholar 

  11. Yang Z, Liu A, Yang J, Fu J, Yang B (2020) Dynamic buckling of functionally graded graphene nanoplatelets reinforced composite shallow arches under a step central point load. J Sound Vib 465:115019

    Google Scholar 

  12. Song G, Gu H (2007) Active vibration suppression of a smart flexible beam using a sliding mode based controller. J Vib Control 13:1095–1107

    MATH  Google Scholar 

  13. Zhang XM, Shao CJ, Erdman AG (2002) Active vibration controller design and comparison study of flexible linkage mechanism systems. Mech Mach Theory 37:985–997

    MATH  Google Scholar 

  14. Ben-Tzvi P, Bai S, Zhou Q, Huang X (2011) Fuzzy sliding mode control of rigid-flexible multibody systems with bounded inputs. J Dyn Syst Meas Control 133:061012

    Google Scholar 

  15. Zhang H, Wang E, Min F, Subash R, Su C (2013) Skyhook-based semi-active control of full-vehicle suspension with magneto-rheological dampers. Chin J Mech Eng 26:498–505

    Google Scholar 

  16. Wang RL, Ho SC, Ma N, Zhang YP, Song G (2016) Active model reference vibration control of a flexible beam with surface-bonded PZT sensor and actuator. J Vibroeng 18:227–237

    Google Scholar 

  17. Huang DS, Zhang JQ, Liu YL (2018) The PID semi-active vibration control on nonlinear suspension system with time delay. Int J Intell Transport Syst Res 16:125–137

    Google Scholar 

  18. Vossoughi GR, Karimzadeh A (2007) Impedance control of a flexible link robot for constrained and unconstrained maneuvers using sliding mode control (SMC) method. Scientia Iranica 14:33–45

    MATH  Google Scholar 

  19. Braz-César MT, Barros R (2013) Passive control of civil engineering structures, IRF2013-integrity, reliability and failure of mechanical systems

  20. Buckle IG (2000) Passive control of structures for seismic loads. Bull N Zeal Soc Earthq Eng 33:209–221

    Google Scholar 

  21. Housner G, Bergman LA, Caughey TK, Chassiakos AG, Claus RO, Masri SF, Skelton RE, Soong TT, Spencer BF, Yao JT (1997) Structural control: past, present, and future. J Eng Mech 123:209–221

    Google Scholar 

  22. Kelly JM, Skinner R, Heine A (1972) Mechanisms of energy absorption in special devices for use in earthquake resistant structures. Bull N Z Soc Earthq Eng 5:63–88

    Google Scholar 

  23. Whittaker AS, Bertero VV, Thompson CL, Alonso LJ (1991) Seismic testing of steel plate energy dissipation devices. Earthq Spectra 7:563–604

    Google Scholar 

  24. Hartog JD (1930) Forced vibrations with combined viscous and coulomb damping. Lond Edinb Dublin Philos Mag J Sci 9:801–817

    MATH  Google Scholar 

  25. Holmes JD (2018) Wind loading of structures. CRC Press, Boca Raton

  26. Mahmoodi P (1969) Structural dampers. J Struct Div 95:1661–1672

    Google Scholar 

  27. Mahmoodi P (1974) Design and analysis of viscoelastic vibration dampers for structures. In: Proceedings of inova-73 world innovative week conference

  28. Constantinou M, Symans M, Tsopelas P, Taylor D (1993) Fluid viscous dampers in applications of seismic energy dissipation and seismic isolation. Proc ATC 17:581–592

    Google Scholar 

  29. Makris N, Constantinou M, Dargush G (1993) Analytical model of viscoelastic fluid dampers. J Struct Eng 119:3310–3325

    Google Scholar 

  30. Miyama T (1992) Seismic response of multi-story frames equipped with energy absorbing story on its top. In: 10th world conference of earthquake engineering, pp 4201–4206

  31. Ueng JM, Lin CC, Wang JF (2008) Practical design issues of tuned mass dampers for torsionally coupled buildings under earthquake loadings. Struct Des Tall Spec Build 17:133–165

    Google Scholar 

  32. Frahm H (1911) Device for damping vibrations of bodies, US Patent 989 958, April 18

  33. Ormondroyd J, Den Hartog JP (1928) The theory of the dynamic vibration absorber. TASME Trans Am Soc Mech Eng 50:9–22

    Google Scholar 

  34. Gutierrez SM, Adeli H (2013) Tuned mass dampers. Arch Comput Methods Eng 20:419–431

    Google Scholar 

  35. Infanti S, Robinson J, Smith R (2008) Viscous dampers for high-rise buildings. In: 14th World conference of earthquake engineering. Beijing, China

  36. Bauer HF (1984) Oscillations of immersible liquids in a rectangular container: a new damper for excited structures. J Sound Vib 93:117–133

    Google Scholar 

  37. Kareem A, Sun WJ (1987) Stochastic response of structures with fluid-containing appendages. J Sound Vib 119:389–408

    MATH  Google Scholar 

  38. Georgakis CT (2011) Tuned liquid damper, US Patent, 7 971 397, July 5

  39. Naeim F, Kelly JM (1999) Design of seismic isolated structures: from theory to practice. Wiley, New York

    Google Scholar 

  40. Makris N (2019) Seismic isolation: early history. Earthq Eng Struct Dyn 48:269–283

    Google Scholar 

  41. Danila G (2005) Seismic response control of buildings using base isolation. Int J Math Comput Sci 1:37–49

    Google Scholar 

  42. Jain SK, Thakkar SK (2000) Seismic response of building base isolated with filled rubber bearings under earthquakes of different characteristics. In: Proceedings of the 12th world conference on earthquake engineering, Auckland, New Zealand

  43. Buckle IG, Mayes RL (1990) Seismic isolation: history, application, and performance—a world view. Earthq Spectra 6:161–201

    Google Scholar 

  44. Kelly JM (1986) Aseismic base isolation: review and bibliography. Soil Dyn Earthq Eng 5:202–216

    Google Scholar 

  45. Demontalk RW (1932) Shock absorbing or minimizing means for buildings, US Patent 1 847 820, March 1

  46. Naderzadeh A (2009) Historical aspects of seismic base isolation application. In: Proceedings of the 15th international symposium on seismic response controlled buildings for sustainable society, vol 16

  47. Bayraktar A, Keypour H, Naderzadeh A (2012) Application of ancient earthquake resistant method in modern construction technology. In: Proceeding 15th world conference of earthquake engineering. Lisbona, Spain

  48. Keypour H, Bayraktar A, Fahjan YM, Naderzadeh A (2008) Engineering aspects of historical structures. In: Proceeding 1st international conference on seismic retrofitting

  49. Naderzadeh A (2009) Application of seismic base isolation technology in Iran. Menshin 63:40–47

    Google Scholar 

  50. Soong TT (1998) State-of-the-art review: active structural control in civil engineering. Eng Struct 10:74–84

    Google Scholar 

  51. Kumar A, Sainib Poonam B, Sehgalc VK (2007) Active vibration control of structures against earthquakes using modern control theory. Asian J Civ Eng (Build Hous) 8:283–299

  52. Luca SG, Pastia C, Chira F (2007) Recent applications of some active control systems to civil engineering structures. Bull Polytech Inst Jassy Constr Archit Sect 53:21–28

    Google Scholar 

  53. Xu ZD, Guo YQ, Zhu JT, Xu FH (2016) Intelligent vibration control in civil engineering structures. Academic Press, New York

  54. Fali L, Sadek Y, Djermane M, Zizouni K (2018) Nonlinear vibrations control of structure under dynamic loads. In: the 4th student symposium on application engineering of mechanics SSAEM’4. Bechar, Algeria

  55. Soong TT (1990) Active structural control: theory and practice. Springer, Berlin

    Google Scholar 

  56. Yang JN, Wu JC, Li Z (1996) Control of seismic excited buildings using active variable stiffness systems. Eng Struct 8:589–596

    Google Scholar 

  57. Kobori T (1986) New philosophy of aseismic design approach on dynamic intelligent building system. In: Annual meeting of architectural Institute of Japan, vol 2419

  58. Kobori T, Koshika N, Yamada K, Ikeda Y (1991) Seismic-response-controlled structure with active mass driver system. Part 1: design. Earthq Eng Struct Dyn 20:133–149

  59. Kobori T, Koshika N, Yamada K, Ikeda Y (1991) Seismic-response-controlled structure with active mass driver system. Part 2: verification. Earthq Eng Struct Dyn 20:151–166

  60. Ikeda Y (2009) Active and semi-active vibration control of buildings in japan-practical applications and verification. Struct Control Health Monit 16:703–723

  61. Nishitani A, Inoue Y (2001) Overview of the application of active/semiactive control to building structures in Japan. Earthq Eng Struct Dyn 30:1565–1574

    Google Scholar 

  62. Fali L, Djermane M, Zizouni K, Sadek Y (2019) Adaptive sliding mode vibrations control for civil engineering earthquake excited structures. Int J Dyn Control 7:955–965

    MathSciNet  Google Scholar 

  63. Saidi A, Zizouni K, Kadri B, Fali L, Bousserhane IK (2019) Adaptive sliding mode control for semiactive structural vibration control. Stud Inform Control 28:371–380

    Google Scholar 

  64. Coleman WR (1926) Shock absorber, dashpot, and the like, US Patent 1 575 973, March 9

  65. Karnopp D, Crosby MJ, Harwood RA (1974) Vibration control using semi-active force generators. J Eng Ind 92:619–626

    Google Scholar 

  66. Hrovat D, Barak P, Rabins M (1983) Semi-active versus passive or active tuned mass dampers for structural control. J Eng Mech 109:691–705

    Google Scholar 

  67. Karnopp D (1990) Design principles for vibration control systems using semi-active dampers. J Dyn Syst Meas Control 112:448–455

    Google Scholar 

  68. Ivers DE, Miller LR (1991) Semi-active suspension technology. an evolutionary view, vol 40. The American Society of Mechanical Engineers, New York, pp 327–346

    Google Scholar 

  69. Symans MD, Constantinou MC (1999) Semi-active control systems for seismic protection of structures: a state of- the-art review. Eng Struct 21:469–487

    Google Scholar 

  70. Sahasrabudhe S, Nagarajaiah S (2005) Experimental study of sliding base-isolated buildings with magnetorheological dampers in near-fault earthquakes. J Struct Eng 131:1025–1034

    Google Scholar 

  71. Rabinow J (1951) Magnetic fluid torque and force transmitting device, US Patent 2 575 360, November 20

  72. Rabinow J (1954) Magnetic fluid shock absorber, US Patent 2 667 237, January 26

  73. Carlson JD, Jolly MR (2000) Mr fluid, foam and elastomer devices. Mechatronics 10:555–569

    Google Scholar 

  74. Bingham EC (1916) An investigation of the laws of plastic flow, U.S. Bureau Stand Bull 13:309–353

  75. Gamota DR, Filisko FE (1991) Dynamic mechanical studies of electrorheological materials: moderate frequencies. J Rheol 35:399–425

    Google Scholar 

  76. Powell JA (1994) Modelling the oscillatory response of an electrorheological fluid. Smart Mater Struct 3:416–438

    Google Scholar 

  77. Fali L, Zizouni K, Djermane M, Sadek Y (2020) Nonlinear control of structures using herschel-bulkley MR damper model, Algerian Congress of Mechanics, 7. Ghardaia, Algeria

  78. Ismail M, Ikhouane F, Rodellar J (2009) The hysteresis Bouc-Wen model, a survey. Arch Comput Methods Eng 16:161–188

    MATH  Google Scholar 

  79. Dyke SJ, Spencer BJrF, Sain MK, Carlson JD (1998) An experimental study of mr dampers for seismic protection. Smart Mater Struct 7:693–703

  80. Spencer BJrF, Dyke SJ, Sain MK, Carlson JD (1997) Phenomenological model for magnetorheological dampers. J Eng Mech 123:230–238

  81. Nishitani A (1998) Application of active structural control in japan. Prog Struct Eng Mater 1:301–307

    Google Scholar 

  82. Zizouni K, Bousserhane IK, Hamouine A, Fali L (2017) MR Damper-LQR control for earthquake vibration mitigation. Int J Civ Eng Technol 8:201–207

    Google Scholar 

  83. Liberzon D (2012) Calculus of variations and optimal control theory: a concise introduction. Princeton University Press

  84. Carathéodory C (1926) Die methode der geodätischen äquidistanten und das problem von lagrange. Acta Mathematica 47:199–236 ((In German))

    MathSciNet  MATH  Google Scholar 

  85. Carathéodory C (1935) Variationsrechnung und partielle differentialgleichungen erster ordnung, Leipzig und Berlin (In German)

  86. Hestenes MR (1950) An elementary introduction to the calculus of variations. Math Mag 23:249–267

    MathSciNet  MATH  Google Scholar 

  87. Pesch HJ, Bulirsch R (1994) The maximum principle. Bellman’s equation, and Carathéodory’s work. J Optim Theory Appl 80:199–225

    MathSciNet  MATH  Google Scholar 

  88. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1961) Mathematical theory of optimal processes. Nauka, Moscow ((In Russian))

    MATH  Google Scholar 

  89. Naidu DS (2002) Optimal control systems. CRC Press, Boca Raton

  90. Wiener N (1948) Cybernetics or control and communication in the animal and the machine. MIT Press

  91. Kalman RE (1960) Contributions to the theory of optimal control. Boletin Sociedad Matematica Mexicana 5:102–119

    MathSciNet  Google Scholar 

  92. Riccati J (1724) Animadversiones in aequationes differentiales secundi gradus. Actorum Eruditorum Supplementa 8:66–73 (In Italian)

  93. Cong X, Guo L (2017) PID control for a class of nonlinear uncertain stochastic systems. In: 2017 IEEE 56th annual conference on decision and control, pp 612–617

  94. Åström KJ, Hägglund T (1995) PID controllers: theory, design, and tuning, 2nd edn. Instrument society of America Research Triangle Park, NC

  95. Mayr O (1970) The origins of feedback control. Sci Am 223:110–119

    MATH  Google Scholar 

  96. O’Dwyer A (2005) PID control: the early years, Technological University Dublin

  97. Throop HN (1857) Governor for steam engines, US Patent 18 997, December 29

  98. Maxwell JC (1868) I. on governors. Proc R Soc Lond 16:270–283

  99. Sperry EA (1918) Gyroscopic compass, US Patent 1 279 471, September 17

  100. Bennett S (1984) Nicholas Minorsky and the automatic steering of ships. IEEE Control Syst Mag 4:10–15

    Google Scholar 

  101. Bennett S (1993) Development of the PID controller. IEEE Control Syst Mag 13:58–62

    Google Scholar 

  102. Flugge-Lotz I (1971) Memorial to N. Minorsky. IEEE Trans Autom Control 16:289–291

    Google Scholar 

  103. Minorsky N (1922) Directional stability of automatically steered bodies. J Am Soc Naval Eng 34:280–309

    Google Scholar 

  104. Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. ASME Trans Am Soc Mech Eng 64:759–768

    Google Scholar 

  105. Ziegler JG, Nichols NB (1943) Process lags in automatic control circuits. ASME Trans Am Soc Mech Eng 65:433–443

    Google Scholar 

  106. Khalil HK (2002) Nonlinear systems, 3rd edn. Pearson, London

    MATH  Google Scholar 

  107. Krstic M, Kokotovic PV, Kanellakopoulos I (1995) Nonlinear and adaptive control design. Wiley, New York

  108. Kokotovic PV (1992) The joy of feedback: nonlinear and adaptive. IEEE Control Syst Mag 12:7–17

    Google Scholar 

  109. Feuer A, Morse A (1978) Adaptive control of single-input, single-output linear systems. IEEE Trans Autom Control 23:557–569

    MathSciNet  MATH  Google Scholar 

  110. Tsinias J (1989) Sufficient Lyapunov-like conditions for stabilization. Math Control Signals Syst 2:343–357

    MathSciNet  MATH  Google Scholar 

  111. Kokotovic PV, Sussmann HJ (1989) A positive real condition for global stabilization of nonlinear systems. Syst Control Lett 13:125–133

    MathSciNet  MATH  Google Scholar 

  112. Villamizar R, Luo N, Dyke SJ, Vehf J (2005) Experimental verification of a Backstepping controller for magnetorheological MR dampers in structural control. In: Proceedings of the 2005 IEEE international symposium on mediterrean conference on control and automation intelligent control, pp 316–321

  113. Bousserhane IK, Boucheta A, Hazzab A, Mazari B, Sicard P (2009) Adaptive backstepping controller design for linear induction motor position control. In: AIP conference Proceedings, intelligent systems and automation, vol 1107, pp 126–131

  114. Chen Z, Lin Z, Yue C, Li Y (2018) Particle swarm optimized command filtered backstepping control for an active magnetic bearing system. In: International conference on information and automation, Wuyi Mountain, China, pp 155–160

  115. Ejaz M, Chen M (2018) Optimal backstepping control for a ship using firefly optimization algorithm and disturbance observer. Trans Inst Meas Control 40:1983–1998

    Google Scholar 

  116. Rodríguez-Abreo O, Garcia-Guendulain JM, Hernández-Alvarado R, Rangel AF, Fuentes-Silva C (2020) Genetic algorithm-based tuning of backstepping controller for a quadrotor-type unmanned aerial vehicle. Electronics 9:1735

    Google Scholar 

  117. Emel’yanov SV (1957) The way of obtaining complicated laws of control using only an error signal and its first derivative. Avtom. i Telemekh 18:873–885

    Google Scholar 

  118. Barbashin E, Tabueva V, Eidinov R (1963) On stability of variable control system under breaking conditions of sliding mode. Avtom. i Telemekh 24:882–890

    Google Scholar 

  119. Utkin VI (1987) Discontinuous control systems: state of art in theory and applications. IFAC Proc Vol 20:25–44

    Google Scholar 

  120. Kulebakin V (1932) On theory of vibration controller for electric machines. Theor Exp Electron 4

  121. Nikolski G (1934) On automatic stability of a ship on a given course. Proc Cent Commun Lab 1:34–75

    Google Scholar 

  122. Itkis U (1976) Control systems of variable structure. Wiley, New York

    Google Scholar 

  123. Utkin VI (1977) Variable structure systems with sliding modes. IEEE Trans Autom Control 22:212–222

    MathSciNet  MATH  Google Scholar 

  124. Draženović B (1969) The invariance conditions in variable structure systems. Automatica 5:287–295

    MathSciNet  MATH  Google Scholar 

  125. Utkin VI (1978) Sliding modes and their applications in variable structure systems. Mir, Moscow

    MATH  Google Scholar 

  126. Yan XG, Spurgeon SK, Edwards C (2017) Variable structure control of complex systems. Springer, Berlin

  127. Hasan A, Oğuz Y (2005) Fuzzy sliding-mode control of structures. Eng Struct 27:277–284

    Google Scholar 

  128. Eker İ (2010) Second-order sliding mode control with experimental application. ISA Trans 49:394–405

    Google Scholar 

  129. Haddad SQG, Akkar HAR (2021) Intelligent swarm algorithms for optimizing nonlinear sliding mode controller for robot manipulator. Int J Electr Comput Eng 11:3943–3955

    Google Scholar 

  130. Jammousi K, Bouzguenda M, Dhieb Y, Ghariani M, Yaich M (2020) Gain optimization of sliding mode speed control for DC motor. In: 6th IEEE international energy conference, pp 159–163

  131. Baez E, Bravo Y, Chavez D, Camacho O (2018) Tuning parameters optimization approach for dynamical sliding mode controllers. IFAC-PapersOnLine 51:656–661

    Google Scholar 

  132. Firdaus AR, Rahman AS (2012) Genetic algorithm of sliding mode control design for manipulator robot. Telkomnika 10:645–654

    Google Scholar 

  133. Robison J (1804) Elements of mechanical philosophy: being the substance of a course of lectures on that science. Archibald Constable & Company

  134. Lyapunov AM (1892) The general problem of the stability of motion. Kharkov Mathematical Society (In Russian)

  135. Chetaev NG (1936) On stable trajectories of dynamics. Kazan University of Science Notes, vol 4 (In Russian)

  136. Malkin IG (1952) Theory of stability of motion, technical Information, the state publishing house of technical theoretical literature, Moscow-Leningrad (In Russian)

  137. Zubov VI (1957) The methods of am lyapunov and their applications, izd. LGU, Leningrad ((In Russian))

    Google Scholar 

  138. Krasovskii NN (1959) Some problems in the theory of motion stability. Fizmatgiz, Moscow, USSR

  139. Filippov AF (1960) Differential equations with discontinuous right-hand side. Matematicheskii Sbornik 51:99–128

    MathSciNet  MATH  Google Scholar 

  140. Hahn W (1967) Stability of motion. Springer, Berlin

    MATH  Google Scholar 

  141. Aizerman MA (1949) On a problem concerning the stability “in the large” of dynamical systems. Uspekhi Matematichesikh Nauk 4:187–188

  142. Lerner AY (1952) Improving the dynamic properties of automatic compensators using non-linear relationships part I. Avtomat. i Telemekh 13:134–144

    Google Scholar 

  143. Massera JL (1956) Contributions to stability theory. Annals of Mathematics 64:182–206

    MathSciNet  MATH  Google Scholar 

  144. Kalman RE, Bertram JE (1960) Control system analysis and design via the second method of lyapunov, part I: Continuous-time systems. Journal of Basic Engineering, ASME 82:371–393

    MathSciNet  Google Scholar 

  145. LaSalle JP, Lefschetz S (1961) Stability of Lyapunov’s direct method with applications. Academic Press

  146. Yoshizawa T (1966) Stability theory by Liapunov’s second method. The Mathematical Society of Japan, Academic Press

    MATH  Google Scholar 

  147. Michel AN, Miller RK (1977) Qualitative analysis of large scale dynamical systems. Academic Press

  148. Siljak DD (1978) Large scale systems: Stability and structure. North Holland, Amsterdam

    MATH  Google Scholar 

  149. Kokotović PV, Arcak M (2001) Constructive nonlinear control: a historical perspective. Automatica 37:637–662

    MathSciNet  MATH  Google Scholar 

  150. Zizouni K, Fali L, Sadek Y, Bousserhane IK (2019) Neural network control for earthquake structural vibration reduction using MRD. Frontiers of Structural and Civil Engineering 13:1171–1182

    Google Scholar 

  151. Haykin SS (2008) Neural networks : a comprehensive foundation, 3rd edn. Prentice Hall

  152. William J (1890) The principles of psychology, vol 1. Henry Holt and Company, New York

    Google Scholar 

  153. Cajal SR (1894) Die retina der wirbelthiere, Ripol Classic Publishing House, Рипол Классик (In German)

  154. Jones EG (2007) Neuroanatomy: Cajal and after Cajal. Brainresearch reviews 55:248–255

    Google Scholar 

  155. Waldeyer W (1891) Ueber einige neuere Forschungen im Gebiete der Anatomie des Centralnervensystems, (Schluss aus No. 49.). DMW-Deutsche Medizinische Wochenschrift 17:1352–1356 (In German)

  156. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics 5:115–133

    MathSciNet  MATH  Google Scholar 

  157. Von Neumann J (1945) First draft of a report on the EDVAC, contract No. W-670-ORD-4926, Technical Report, University of Pennsylvania

  158. Hebb DO (1949) The organization of behavior: a neuropsychological theory. J. Wiley, Chapman Hall

    Google Scholar 

  159. Minsky M (1961) Steps toward artificial intelligence. Proceedings of the IRE 49:8–30

    MathSciNet  Google Scholar 

  160. Rosenblatt F (1958) The Perceptron: a probabilistic model for information storage and organization in the brain. Psychological review 65:386–408

    Google Scholar 

  161. Poulton MM (2001) Computational neural networks for geophysical data processing. Elsevier

  162. Minsky M, Papert S (1969) Perceptrons: An introduction to computational geometry. The MIT press, Cambridge, Massachusetts

    MATH  Google Scholar 

  163. Widrow B (1960) An adaptive ’ADALINE’ neuron using chemical ’Memistors’, Technical Report No. TR-1553-2. Services Technical Information Agency, Virginia, USA

  164. Widrow B, Hoff ME (1960) Adaptive switching circuits, Technical Report No. TR-1553-1. Services Technical Information Agency

  165. Widrow B, Lehr MA (1990) 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proceedings of the IEEE 78:1415–1442

    Google Scholar 

  166. Yadav N, Yadav A, Kumar M (2015) An introduction to neural network methods for differential equations. Springer, Berlin

    MATH  Google Scholar 

  167. Aizerman MA (1964) Theoretical foundations of the potential function method in pattern recognition learning. Automation and remote control 25:821–837

    MATH  Google Scholar 

  168. Ivakhnenko AG, Lapa VG (1966) Cybernetic predicting devices, Technical Report, Washington. Joint Publications Research Service, USA

    Google Scholar 

  169. Amari S (1967) A theory of adaptive pattern classifiers. IEEE Transactions on Electronic Computers 3:299–307

    MATH  Google Scholar 

  170. Fukushima K (1969) Visual feature extraction by a multilayered network of analog threshold elements. IEEE Transactions on Systems Science and Cybernetics 5:322–333

    MATH  Google Scholar 

  171. Grossberg S (1969) Embedding fields: A theory of learning with physiological implications. Journal of Mathematical Psychology 6:209–239

    MATH  Google Scholar 

  172. Klopf AH, Gose E (1969) An evolutionary pattern recognition network. IEEE Transactions on Systems Science and Cybernetics 5:247–250

    Google Scholar 

  173. Werbos P (1974) Beyond regression: new tools for prediction and analysis in the behavioral sciences, Ph. D. dissertation, Harvard University

  174. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    MathSciNet  MATH  Google Scholar 

  175. Hinton GE, Sejnowski TJ (1983) Optimal perceptual inference. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 448

  176. Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation, Technical Report, California Univ San Diego La Jolla Inst for Cognitive Science

  177. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. In Proceedings of the national academy of sciences 79:2554–2558

    MathSciNet  MATH  Google Scholar 

  178. Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. In Proceedings of the national academy of sciences 81:3088–3092

    MATH  Google Scholar 

  179. Rumelhart DE, McClelland JL (1986) Parallel distributed processing. Explorations in the microstructure of cognition: foundations, vol 1. MIT Press, Cambridge, MA

    Google Scholar 

  180. Rumelhart DE, McClelland JL (1986) On learning the past tenses of english verbs, parallel distributed processing: explorations in the microstructure of cognition. Psychological and biological models, vol 2. MIT Press, Cambridge, MA

    Google Scholar 

  181. Alibakhshikenari M, Babaeian F, Virdee BS, Aïssa S, Azpilicueta L, See CH, Althuwaybet AA, Huynen I, Abd-Alhameed RA, Falcone F, Limiti E (2020) A Comprehensive Survey on “Various Decoupling Mechanisms with Focus on Metamaterial and Metasurface Principles Applicable to SAR and MIMO Antenna Systems.” IEEE Access 8:192965–193004

  182. Li X, Xing T, Zhao J, Gai X (2020) Broadband low frequency sound absorption using a monostable acoustic metamaterial. The Journal of the Acoustical Society of America 147:113–118

    Google Scholar 

  183. Suarez OJ, Vega CJ, Sanchez EN, Chen G, Elvira-Ceja JS, Rodriguez DI (2020) Neural sliding-mode pinning control for output synchronization for uncertain general complex networks. Automatica 112:108694

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyla Fali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fali, L., Zizouni, K., Saidi, A. et al. Structural Vibration Control in Excited Structures: History and Prospects. J. Vib. Eng. Technol. 11, 1287–1308 (2023). https://doi.org/10.1007/s42417-022-00641-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00641-6

Keywords

Navigation