Study of Autonomous Conservative Oscillator Using an Improved Perturbation Method



In a recent article (Manimegalai et al. in Eur Phys J Plus 134:462, 2019), Aboodh transform based homotopy perturbation method (AT) has been found to produce approximate analytical solutions in a simple way but with better accuracy in comparison to those obtained from some of the established approximation methods (Mehdipour et al. in Curr Appl Phys 10:104, 2010; Nofal et al. in J Electromagn Anal Appl 5(10):388, 2013) for some physically relevant anharmonic oscillators such as autonomous conservative oscillator (ACO).


In the present article, expansion of frequency (\(\omega\)) and an auxiliary parameter (h) are incorporated in the framework of the homotopy perturbation method (HPM) to improve the accuracy by retaining its simplicity.

Results and conclusions

Laplace transform is used to make the calculation simpler. This improved HPM (LH) is simple but provides highly accurate results for ACO in comparison to those obtained from AT. The error in the values of frequency and displacement calculated using the LH is found to be one or two order of magnitude less than those obtained from AT for the considered parameter sets.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Manimegalai K, Zephania CFS, Bera PK, Bera P, Das SK, Sil T (2019) Study of strongly nonlinear oscillators using the Aboodh transform and the homotopy perturbation method. Eur Phys J Plus 134:462

    Article  Google Scholar 

  2. 2.

    Mehdipour I, Ganji DD, Mozaffari M (2010) Application of the energy balance method to nonlinear vibrating equations. Curr Appl Phys 10:104

    Article  Google Scholar 

  3. 3.

    Nofal TA, Ismail GM, Mady AAM, Abdel-Khalek S (2013) Analytical and approximate solutions to the fee vibration of strongly nonlinear oscillators. J Electromagn Anal Appl 5(10):388

    Google Scholar 

  4. 4.

    Bonham RA, Su LS (1966) Use of Hellmann–Feynman and hypervirial theorems to obtain anharmonic vibration-rotation expectation values and their application to gas diffraction. J Chem Phys 45:2827

    Article  Google Scholar 

  5. 5.

    Bender CM, Wu TT (1969) Anharmonic oscillator. Phys Rev 184:1231

    MathSciNet  Article  Google Scholar 

  6. 6.

    Chang S-J (1975) Quantum fluctuations in a \(\phi ^4\) field theory. I. Stability of the vacuum. Phys Rev D 12:1071

    Article  Google Scholar 

  7. 7.

    Hsue CS, Chern JL (1984) Two-step approach to one-dimensional anharmonic oscillators. Phys Rev D 29:643

    MathSciNet  Article  Google Scholar 

  8. 8.

    Ishmukhamedov IS, Melezhika VS (2017) Tunneling of two bosonic atoms from a one-dimensional anharmonic trap. Phys Rev A 95:062701

    Article  Google Scholar 

  9. 9.

    Prentice JC, Monserrat B, Needs RJ (2017) First-principles study of the dynamic Jahn–Teller distortion of the neutral vacancy in diamond. Phys Rev B 95:014108

    Article  Google Scholar 

  10. 10.

    Nayfeh AH, Mook D (1979) Nonlinear oscillations. Willey, New York

    Google Scholar 

  11. 11.

    Agrwal V, Denman H (1985) Weighted linearization technique for period approximation in large amplitude non-linear oscillations. J Sound Vib 99:463

    Article  Google Scholar 

  12. 12.

    Chen S, Cheung Y, Lau S (1991) On perturbation procedure for limit cycle analysis. Int J Nonlinear Mech 26:125

    MathSciNet  Article  Google Scholar 

  13. 13.

    Cheung Y, Chen S, Lau S (1991) A modified Lindstedt–Poincaré method for certain strongly non-linear oscillators. Int J Nonlinear Mech 26:367

    Article  Google Scholar 

  14. 14.

    Adomian G (1988) A review of the decomposition method in applied mathematics. J Math Anal Appl 135:501

    MathSciNet  Article  Google Scholar 

  15. 15.

    Herisanu N, Marinca V, Madescu G, Dragan F (2019) Dynamic response of a permanent magnet synchronous generator to a wind gust. Energies 12:915

    Article  Google Scholar 

  16. 16.

    Anjum N, He J-H (2019) Laplace transform: making the variational iteration method easier. Appl Math Lett 92:134

    MathSciNet  Article  Google Scholar 

  17. 17.

    Liao SJ (1992) The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. thesis, Shanghai Jiao Tong University, Shanghai

  18. 18.

    Liao SJ (2009) Notes on the homotopy analysis method: some definitions and theorems. Commun Nonlinear Sci Numer Simul 14:983

    MathSciNet  Article  Google Scholar 

  19. 19.

    He J-H (1999) Homotopy perturbation technique. Comput Method Appl M 178:257

    MathSciNet  Article  Google Scholar 

  20. 20.

    He J-H (2000) A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int J Nonlinear Mech 35:37

    MathSciNet  Article  Google Scholar 

  21. 21.

    Biazar J, Eslami M (2011) A new homotopy perturbation method for solving systems of partial differential equations. Comput Math Appl 62:225

    MathSciNet  Article  Google Scholar 

  22. 22.

    Bera P, Sil T (2012) Homotopy perturbation method in quantum mechanical problems. Appl Math Comput 219:3272

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Yıldırım A (2009) Retraction: “Homotopy perturbation method to obtain exact special solutions with solitary patterns for Boussinesq-like B(m, n) equations with fully nonlinear dispersion. J Math Phys 50:023510

    MathSciNet  Article  Google Scholar 

  24. 24.

    Ayati Z, Biazar J (2015) On the convergence of homotopy perturbation method. J Egypt Math Soc 23:424

    MathSciNet  Article  Google Scholar 

  25. 25.

    He J-H (2004) Comparison of homotopy perturbation method and homotopy analysis method. Appl Math Comput 156:527

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Liao SJ (2005) An analytic approach to solve multiple solutions of a strongly nonlinear problem. Appl Math Comput 169:854

    MathSciNet  MATH  Google Scholar 

  27. 27.

    He J-H (2006) New interpretation of homotopy perturbation method. Int J Mod Phys B 20:2561

    Article  Google Scholar 

  28. 28.

    Bayat M, Pakar I, Bayat M, He J-H (2011) Analytical study on the vibration frequencies of tapered beam. Latin Am J Solids Struct 8:149

    Article  Google Scholar 

  29. 29.

    Marinca V, Herisanu N (2010) optimal homotopy perturbation method for strongly nonlinear differential equations. Nonlinear Sci Lett A 1:273

    MATH  Google Scholar 

  30. 30.

    Marinca V, Herisanu N (2011) Nonlinear dynamic analysis of an electrical machine rotor-bearing system by optimal homotopy perturbation method. Comput Math Appl 61:2019

    MathSciNet  Article  Google Scholar 

  31. 31.

    Akbarzade M, Langari J (2011) Determination of natural frequencies by coupled method of homotopy perturbation and variational method for strongly nonlinear oscillators. J Math Phys 52:023518

    MathSciNet  Article  Google Scholar 

  32. 32.

    Hamdan MN, Shabaneh NH (1997) On the large amplitude free vibrations of a restrained uniform beam carrying an intermediate lumped mass. J Sound Vib 199:711

    Article  Google Scholar 

  33. 33.

    Hamdan MN, Shabaneh NH (1997) On the period of large amplitude free vibrations of conservative autonomous oscillators with static and inertia type cubic non-linearities. J Sound Vib 199:737

    Article  Google Scholar 

  34. 34.

    Qaisi MI, Al-Huniti NS (2001) Large amplitude free vibration of a conservative system with inertia and static nonlinearity. J Sound Vib 242:1

    Article  Google Scholar 

  35. 35.

    Madani M, Fathizadeh M, Khan Y, Yildirim A (2011) On the coupling of the homotopy perturbation method and Laplace transformation. Math Comput Model 53:1937

    MathSciNet  Article  Google Scholar 

  36. 36.

    Arfken GB, Weber HJ, Harris FE (2013) Mathematical methods for physicists. Academic Press, New Delhi

    Google Scholar 

  37. 37.

    Martin Hermann MS, Khah HE (2014) Analytical study of nonlinear oscillatory systems using the Hamiltonian approach technique. J Theor Appl Phys 8:133

    Article  Google Scholar 

  38. 38.

    Wu B, Liu W, Zhong H, Lim CW (2019) A modified Newton-harmonic balance approach to strongly odd nonlinear oscillators. J Vib Eng Technol.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Tapas Sil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zephania, C.F.S., Sil, T. Study of Autonomous Conservative Oscillator Using an Improved Perturbation Method. J. Vib. Eng. Technol. (2020).

Download citation


  • Homotopy perturbation method
  • Nonlinear oscillator
  • Analytical approximation